本教程将介绍在服务器端部署PaddleClas模型的详细步骤。
- Linux环境,推荐使用docker。
- Windows环境,目前支持基于
Visual Studio 2019 Community
进行编译;此外,如果您希望通过生成sln解决方案
的方式进行编译,可以参考该文档:https://zhuanlan.zhihu.com/p/145446681
- 该文档主要介绍基于Linux环境下的PaddleClas C++预测流程,如果需要在Windows环境下使用预测库进行C++预测,具体编译方法请参考Windows下编译教程。
- 首先需要从opencv官网上下载在Linux环境下源码编译的包,以3.4.7版本为例,下载及解压缩命令如下:
wget https://github.com/opencv/opencv/archive/3.4.7.tar.gz
tar -xvf 3.4.7.tar.gz
最终可以在当前目录下看到opencv-3.4.7/
的文件夹。
- 编译opencv,首先设置opencv源码路径(
root_path
)以及安装路径(install_path
),root_path
为下载的opencv源码路径,install_path
为opencv的安装路径。在本例中,源码路径即为当前目录下的opencv-3.4.7/
。
cd ./opencv-3.4.7
export root_path=$PWD
export install_path=${root_path}/opencv3
- 然后在opencv源码路径下,按照下面的方式进行编译。
rm -rf build
mkdir build
cd build
cmake .. \
-DCMAKE_INSTALL_PREFIX=${install_path} \
-DCMAKE_BUILD_TYPE=Release \
-DBUILD_SHARED_LIBS=OFF \
-DWITH_IPP=OFF \
-DBUILD_IPP_IW=OFF \
-DWITH_LAPACK=OFF \
-DWITH_EIGEN=OFF \
-DCMAKE_INSTALL_LIBDIR=lib64 \
-DWITH_ZLIB=ON \
-DBUILD_ZLIB=ON \
-DWITH_JPEG=ON \
-DBUILD_JPEG=ON \
-DWITH_PNG=ON \
-DBUILD_PNG=ON \
-DWITH_TIFF=ON \
-DBUILD_TIFF=ON
make -j
make install
make install
完成之后,会在该文件夹下生成opencv头文件和库文件,用于后面的PaddleClas代码编译。
以opencv3.4.7版本为例,最终在安装路径下的文件结构如下所示。注意:不同的opencv版本,下述的文件结构可能不同。
opencv3/
|-- bin
|-- include
|-- lib64
|-- share
- 有2种方式获取Paddle预测库,下面进行详细介绍。
- 如果希望获取最新预测库特性,可以从Paddle github上克隆最新代码,源码编译预测库。
- 可以参考Paddle预测库官网的说明,从github上获取Paddle代码,然后进行编译,生成最新的预测库。使用git获取代码方法如下。
git clone https://github.com/PaddlePaddle/Paddle.git
- 进入Paddle目录后,使用如下方法编译。
rm -rf build
mkdir build
cd build
cmake .. \
-DWITH_CONTRIB=OFF \
-DWITH_MKL=ON \
-DWITH_MKLDNN=ON \
-DWITH_TESTING=OFF \
-DCMAKE_BUILD_TYPE=Release \
-DWITH_INFERENCE_API_TEST=OFF \
-DON_INFER=ON \
-DWITH_PYTHON=ON
make -j
make inference_lib_dist
更多编译参数选项可以参考Paddle C++预测库官网:https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/guides/05_inference_deployment/inference/build_and_install_lib_cn.html#id16。
- 编译完成之后,可以在
build/paddle_inference_install_dir/
文件下看到生成了以下文件及文件夹。
build/paddle_inference_install_dir/
|-- CMakeCache.txt
|-- paddle
|-- third_party
|-- version.txt
其中paddle
就是之后进行C++预测时所需的Paddle库,version.txt
中包含当前预测库的版本信息。
-
Paddle预测库官网上提供了不同cuda版本的Linux预测库,可以在官网查看并选择合适的预测库版本,注意必须选择
develop
版本。以
ubuntu14.04_cuda9.0_cudnn7_avx_mkl
的develop
版本为例,使用下述命令下载并解压:
wget https://paddle-inference-lib.bj.bcebos.com/latest-gpu-cuda9-cudnn7-avx-mkl/paddle_inference.tgz
tar -xvf paddle_inference.tgz
最终会在当前的文件夹中生成paddle_inference/
的子文件夹。
- 可以参考模型导出,导出
inference model
,用于模型预测。得到预测模型后,假设模型文件放在inference
目录下,则目录结构如下。
inference/
|--cls_infer.pdmodel
|--cls_infer.pdiparams
注意:上述文件中,cls_infer.pdmodel
文件存储了模型结构信息,cls_infer.pdiparams
文件存储了模型参数信息。注意两个文件的路径需要与配置文件tools/config.txt
中的cls_model_path
和cls_params_path
参数对应一致。
- 编译命令如下,其中Paddle C++预测库、opencv等其他依赖库的地址需要换成自己机器上的实际地址。
sh tools/build.sh
具体地,tools/build.sh
中内容如下。
OPENCV_DIR=your_opencv_dir
LIB_DIR=your_paddle_inference_dir
CUDA_LIB_DIR=your_cuda_lib_dir
CUDNN_LIB_DIR=your_cudnn_lib_dir
TENSORRT_DIR=your_tensorrt_lib_dir
BUILD_DIR=build
rm -rf ${BUILD_DIR}
mkdir ${BUILD_DIR}
cd ${BUILD_DIR}
cmake .. \
-DPADDLE_LIB=${LIB_DIR} \
-DWITH_MKL=ON \
-DDEMO_NAME=clas_system \
-DWITH_GPU=OFF \
-DWITH_STATIC_LIB=OFF \
-DWITH_TENSORRT=OFF \
-DTENSORRT_DIR=${TENSORRT_DIR} \
-DOPENCV_DIR=${OPENCV_DIR} \
-DCUDNN_LIB=${CUDNN_LIB_DIR} \
-DCUDA_LIB=${CUDA_LIB_DIR} \
make -j
上述命令中,
-
OPENCV_DIR
为opencv编译安装的地址(本例中为opencv-3.4.7/opencv3
文件夹的路径); -
LIB_DIR
为下载的Paddle预测库(paddle_inference
文件夹),或编译生成的Paddle预测库(build/paddle_inference_install_dir
文件夹)的路径; -
CUDA_LIB_DIR
为cuda库文件地址,在docker中为/usr/local/cuda/lib64
; -
CUDNN_LIB_DIR
为cudnn库文件地址,在docker中为/usr/lib/x86_64-linux-gnu/
。 -
TENSORRT_DIR
是tensorrt库文件地址,在dokcer中为/usr/local/TensorRT6-cuda10.0-cudnn7/
,TensorRT需要结合GPU使用。
在执行上述命令,编译完成之后,会在当前路径下生成build
文件夹,其中生成一个名为clas_system
的可执行文件。
-
首先修改
tools/config.txt
中对应字段:- use_gpu:是否使用GPU;
- gpu_id:使用的GPU卡号;
- gpu_mem:显存;
- cpu_math_library_num_threads:底层科学计算库所用线程的数量;
- use_mkldnn:是否使用MKLDNN加速;
- use_tensorrt: 是否使用tensorRT进行加速;
- use_fp16:是否使用半精度浮点数进行计算,该选项仅在use_tensorrt为true时有效;
- cls_model_path:预测模型结构文件路径;
- cls_params_path:预测模型参数文件路径;
- resize_short_size:预处理时图像缩放大小;
- crop_size:预处理时图像裁剪后的大小。
-
然后修改
tools/run.sh
:./build/clas_system ./tools/config.txt ./docs/imgs/ILSVRC2012_val_00000666.JPEG
- 上述命令中分别为:编译得到的可执行文件
clas_system
;运行时的配置文件config.txt
;待预测的图像。
-
最后执行以下命令,完成对一幅图像的分类。
sh tools/run.sh
- 最终屏幕上会输出结果,如下图所示。
其中class id
表示置信度最高的类别对应的id,score表示图片属于该类别的概率。