diff --git a/tests/fpgadataflow/test_fpgadataflow_mvau_rtl.py b/tests/fpgadataflow/test_fpgadataflow_mvau_rtl.py index ebcc87102d..5091581d75 100644 --- a/tests/fpgadataflow/test_fpgadataflow_mvau_rtl.py +++ b/tests/fpgadataflow/test_fpgadataflow_mvau_rtl.py @@ -87,12 +87,13 @@ def make_single_matmul_modelwrapper(W, ofm_shape, mh, ifm, weights, idt, wdt): def prepare_inputs(input_tensor): return {"ifm": input_tensor} -@pytest.mark.parametrize("mh", [31]) -@pytest.mark.parametrize("mw", [279]) -#@pytest.mark.parametrize("pe", [1,2,4,8]) -@pytest.mark.parametrize("pe", [31]) -#@pytest.mark.parametrize("simd", [1,3,6,9,18,36]) -@pytest.mark.parametrize("simd", [9]) +@pytest.mark.parametrize("mh", [4]) +# @pytest.mark.parametrize("mw", [36]) +@pytest.mark.parametrize("mw", [18]) +# @pytest.mark.parametrize("pe", [1,2,4,8]) +@pytest.mark.parametrize("pe", [2]) +# @pytest.mark.parametrize("simd", [1,3,6,9,18,36]) +@pytest.mark.parametrize("simd", [6]) #@pytest.mark.parametrize("idt", [DataType["UINT4"], DataType["UINT8"]]) @pytest.mark.parametrize("idt", [DataType["UINT8"]]) #@pytest.mark.parametrize("wdt", [DataType["INT4"], DataType["INT6"]]) @@ -121,6 +122,9 @@ def test_fpgadataflow_mvau_rtl(mh, mw, pe, simd, idt, wdt, part, segmentlen): [mw, mh] ) W = gen_finn_dt_tensor(wdt, (mw, mh)) + # np.save("weights.npy", W) + ## + W = np.load("weights.npy") model = make_single_matmul_modelwrapper(W, ofm_shape, mh, ifm, weights, idt, wdt) model = model.transform(GiveUniqueNodeNames()) @@ -128,6 +132,9 @@ def test_fpgadataflow_mvau_rtl(mh, mw, pe, simd, idt, wdt, part, segmentlen): # Create MatMul & obtain golden reference output A = gen_finn_dt_tensor(model.get_tensor_datatype("ifm"), model.get_tensor_shape("ifm")) + # np.save("activations.npy", A) + ## + # A = np.load("activations.npy") input_dict = prepare_inputs(A) ## Execute ONNX model @@ -198,5 +205,6 @@ def test_fpgadataflow_mvau_rtl(mh, mw, pe, simd, idt, wdt, part, segmentlen): # model = model.transform(CreateStitchedIP(fpgapart=part, clk_ns=clk_ns, vitis=True)) # model.save(build_dir+"/stitched_ip.onnx") - assert (output_mvau_hls == output_mvau_rtl).all() + #assert (output_mvau_hls == output_mvau_rtl).all() + assert (output_matmul['ofm'] == output_mvau_rtl).all() # assert (output_mvau_hls.size > 0)