-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path0-abaqus_checkerboard_mesh.py
208 lines (176 loc) · 9.51 KB
/
0-abaqus_checkerboard_mesh.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
###############################################################################################################
# #
# This Python generates an Abaqus model of the heat conduction problem in a checkerboard made #
# out of the repetition of N_cells*N_cells unit cells Y. #
# #
# The required inputs are as listed below: #
# - N_cells: number of repeated cells in each direction (line 25) #
# - kappa_ratio: thermal conductivity ratio kappa2/kappa1 (line 28) #
# - nelements_tile: number of finite elements per tile side (line 31) #
# - element_order: finite element order (line 34) #
# - periodic: impose periodicity constraints (line 37) #
# #
# DISCLAIMER: This code is intended for educational purposes only. Usage for #
# any other purpose is done at the user's own risks. #
# #
###############################################################################################################
from abaqus import *
from assembly import *
from abaqusConstants import *
from caeModules import *
from driverUtils import executeOnCaeStartup
# number of repeated cells in each direction
N_cells=8
# thermal conductivity ratio kappa2/kappa1
kappa_ratio=4
# number of finite elements per tile side
nelements_tile=40
# finite element order
element_order=1
# periodicity constraint
periodic=False
###############################################################################################################
# DO NOT CHANGE ANYTHING BELOW HERE #
###############################################################################################################
nelements_side=2*N_cells*nelements_tile
if element_order==1:
n_nodes = (nelements_side+1)**2
elif element_order==2:
n_nodes = 3*nelements_side**2+4*nelements_side+1
else:
raise ValueError, 'The element order is '+ str(element_order) + '. It can only be 1 or 2.'
print (error)
# if n_nodes>250000:
# raise ValueError, 'Total number of nodes is '+ str(n_nodes) + '. It must be below 250,000.'
# print (error)
namefile=str(N_cells) +"_cells_" + str(nelements_tile) + "_elements_tile"
mesh_size = 1./nelements_side;
# Some shortcuts
executeOnCaeStartup()
mdb.Model(modelType=STANDARD_EXPLICIT, name=namefile)
s = mdb.models[namefile].ConstrainedSketch(name='__profile__', sheetSize=5.0)
g, v, d, c = s.geometry, s.vertices, s.dimensions, s.constraints
s.setPrimaryObject(option=STANDALONE)
# Create rectangle
s.rectangle(point1=(0.0, 0.0), point2=(1, 1))
p = mdb.models[namefile].Part(name='Part-1', dimensionality=TWO_D_PLANAR,
type=DEFORMABLE_BODY)
p = mdb.models[namefile].parts['Part-1']
p.BaseShell(sketch=s)
s.unsetPrimaryObject()
p = mdb.models[namefile].parts['Part-1']
session.viewports['Viewport: 1'].setValues(displayedObject=p)
del mdb.models[namefile].sketches['__profile__']
# Partition in between different regions
p = mdb.models[namefile].parts['Part-1']
f, e, d1 = p.faces, p.edges, p.datums
t = p.MakeSketchTransform(sketchPlane=f[0], sketchPlaneSide=SIDE1, origin=(
0.0, 0.0, 0.0))
s1 = mdb.models[namefile].ConstrainedSketch(name='__profile__',
sheetSize=5, gridSpacing=1, transform=t)
g, v, d, c = s1.geometry, s1.vertices, s1.dimensions, s1.constraints
s1.setPrimaryObject(option=SUPERIMPOSE)
p = mdb.models[namefile].parts['Part-1']
p.projectReferencesOntoSketch(sketch=s1, filter=COPLANAR_EDGES)
for k in range(1,2*N_cells):
s1.Line(point1=(0, k/(2.*N_cells)), point2=(1., k/(2.*N_cells)))
s1.Line(point1=(k/(2.*N_cells),0.), point2=(k/(2.*N_cells),1.))
p = mdb.models[namefile].parts['Part-1']
f = p.faces
pickedFaces = f.getSequenceFromMask(mask=('[#1 ]', ), )
e1, d2 = p.edges, p.datums
p.PartitionFaceBySketch(faces=pickedFaces, sketch=s1)
s1.unsetPrimaryObject()
del mdb.models[namefile].sketches['__profile__']
# Sets
p = mdb.models[namefile].parts['Part-1']
ph1=(((-1, -1, 0.0),),)
ph2=(((-1, -1, 0.0),),)
bdry=(((-1, -1, 0.0),),)
for i in range(0,2*N_cells):
bdry=bdry+((((i+0.5)/(2*N_cells), 0.0, 0.0),),)+((((i+0.5)/(2*N_cells), 1.0, 0.0),),)
bdry=bdry+(((0.0,(i+0.5)/(2*N_cells), 0.0),),)+(((1.0, (i+0.5)/(2*N_cells), 0.0),),)
for j in range(0,2*N_cells):
if (i+j)%2==1:
ph1=ph1+((((i+0.5)/(2*N_cells), (j+0.5)/(2*N_cells), 0.0),),)
else:
ph2=ph2+((((i+0.5)/(2*N_cells), (j+0.5)/(2*N_cells), 0.0),),)
p.Set(faces=p.faces.findAt(*ph1),name='phase1')
p.Set(faces=p.faces.findAt(*ph2),name='phase2')
p.Set(edges=p.edges.findAt(*bdry),name='boundary')
# Material -- Section
mdb.models[namefile].Material(name='Material-1')
mdb.models[namefile].materials['Material-1'].Conductivity(table=((1.0, ), ))
mdb.models[namefile].HomogeneousSolidSection(material='Material-1', name='Material-1', thickness=None)
p = mdb.models[namefile].parts['Part-1']
pickedRegions =(p.sets['phase1'].faces, )
p.SectionAssignment(region=pickedRegions, sectionName='Material-1')
mdb.models[namefile].Material(name='Material-2')
mdb.models[namefile].materials['Material-2'].Conductivity(table=((kappa_ratio, ), ))
mdb.models[namefile].HomogeneousSolidSection(material='Material-2', name='Material-2', thickness=None)
p = mdb.models[namefile].parts['Part-1']
pickedRegions =(p.sets['phase2'].faces, )
p.SectionAssignment(region=pickedRegions, sectionName='Material-2')
# Mesh
# Seed edges
session.viewports['Viewport: 1'].partDisplay.setValues(mesh=ON)
session.viewports['Viewport: 1'].partDisplay.meshOptions.setValues(
meshTechnique=ON)
session.viewports['Viewport: 1'].partDisplay.geometryOptions.setValues(
referenceRepresentation=OFF)
p = mdb.models[namefile].parts['Part-1']
e = p.edges
p.seedEdgeBySize(edges=e, size=mesh_size, deviationFactor=0.1, constraint=FIXED)
# Set elements particle controls
p = mdb.models[namefile].parts['Part-1']
f = p.faces
p.setMeshControls(regions=f, elemShape=QUAD, technique=STRUCTURED)
#elements type
if element_order==1:
elemType = mesh.ElemType(elemCode=DC2D4, elemLibrary=STANDARD)
elif element_order==2:
elemType = mesh.ElemType(elemCode=DC2D8, elemLibrary=STANDARD)
else:
raise ValueError, 'The element order is '+ str(element_order) + '. It can only be 1 or 2.'
print (error)
# Set elements
pickedRegions =(p.sets['phase1'].faces, )
p.setElementType(regions=pickedRegions, elemTypes=(elemType, elemType))
pickedRegions =(p.sets['phase2'].faces, )
p.setElementType(regions=pickedRegions, elemTypes=(elemType, elemType))
# Mesh
p = mdb.models[namefile].parts['Part-1']
p.generateMesh(regions=p.faces)
session.viewports['Viewport: 1'].partDisplay.setValues(sectionAssignments=ON,
engineeringFeatures=ON, mesh=OFF)
session.viewports['Viewport: 1'].partDisplay.meshOptions.setValues(
meshTechnique=OFF)
# Assembly/part
a = mdb.models[namefile].rootAssembly
session.viewports['Viewport: 1'].setValues(displayedObject=a)
a = mdb.models[namefile].rootAssembly
a.DatumCsysByDefault(CARTESIAN)
p = mdb.models[namefile].parts['Part-1']
a.Instance(name='Part-1-1', part=p, dependent=ON)
if periodic:
if element_order==1:
nn=nelements_side+1
sz=1./(nn-1)
else:
nn=2*nelements_side+1
sz=1./(nn-1)
p.Set(nodes=p.nodes.getByBoundingBox(xMin=-sz/3.,yMin=-sz/3.,zMin=0.,xMax=sz/3.,yMax=sz/3.,zMax=0.),name='bottom_left_corner')
p.Set(nodes=p.nodes.getByBoundingBox(xMin=1-sz/3.,yMin=-sz/3.,zMin=0.,xMax=1+sz/3.,yMax=sz/3.,zMax=0.),name='bottom_right_corner')
p.Set(nodes=p.nodes.getByBoundingBox(xMin=-sz/3.,yMin=1-sz/3.,zMin=0.,xMax=sz/3.,yMax=1+sz/3.,zMax=0.),name='top_left_corner')
for k in range(1,nn):
p.Set(nodes=p.nodes.getByBoundingBox(xMin=sz*(k-1./4.),yMin=1.-sz/4.,zMin=0.,xMax=sz*(k+1./4),yMax=1.+sz/4.,zMax=0.),name='Set-top-'+str(k))
p.Set(nodes=p.nodes.getByBoundingBox(xMin=sz*(k-1./4.),yMin=-sz/4.,zMin=0.,xMax=sz*(k+1./4.),yMax=sz/4.,zMax=0.),name='Set-bot-'+str(k))
mdb.models[namefile].Equation(name='Constraint-top-bot-'+str(k), terms=((
1.0, 'Part-1-1.Set-top-'+str(k), 11), (-1.0, 'Part-1-1.Set-bot-'+str(k), 11), (-1.0, 'Part-1-1.top_left_corner', 11), (1.0, 'Part-1-1.bottom_left_corner', 11)))
if k< nn-1:
p.Set(nodes=p.nodes.getByBoundingBox(yMin=sz*(k-1./4.),xMin=1.-sz/4.,zMin=0.,yMax=sz*(k+1./4.),xMax=1.+sz/4.,zMax=0.),name='Set-right-'+str(k))
p.Set(nodes=p.nodes.getByBoundingBox(yMin=sz*(k-1./4.),xMin=-sz/4.,zMin=0.,yMax=sz*(k+1./4.),xMax=sz/4.,zMax=0.),name='Set-left-'+str(k))
mdb.models[namefile].Equation(name='Constraint-right-left-'+str(k), terms=((
1.0, 'Part-1-1.Set-right-'+str(k), 11), (-1.0, 'Part-1-1.Set-left-'+str(k), 11), (-1.0, 'Part-1-1.bottom_right_corner', 11), (1.0, 'Part-1-1.bottom_left_corner', 11)))
mdb.models[namefile].HeatTransferStep(amplitude=RAMP, minInc=1.0, name=
'Step-1', previous='Initial', response=STEADY_STATE)