forked from tal-tech/SAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
106 lines (71 loc) · 3.47 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import os
import time
import argparse
import random
import torch
import numpy as np
from tensorboardX import SummaryWriter
from utils import load_config, save_checkpoint, load_checkpoint
from dataset import get_dataset
from models.Backbone import Backbone
from training import train, eval
parser = argparse.ArgumentParser(description='HYB Tree')
parser.add_argument('--config', default='config.yaml', type=str, help='path to config file')
parser.add_argument('--check', action='store_true', help='only for code check')
args = parser.parse_args()
if not args.config:
print('please provide config yaml')
exit(-1)
"""config"""
params = load_config(args.config)
"""random seed"""
random.seed(params['seed'])
np.random.seed(params['seed'])
torch.manual_seed(params['seed'])
torch.cuda.manual_seed(params['seed'])
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
params['device'] = device
train_loader, eval_loader = get_dataset(params)
model = Backbone(params)
now = time.strftime("%Y-%m-%d-%H-%M", time.localtime())
model.name = f'{params["experiment"]}_{now}_Encoder-{params["encoder"]["net"]}_Decoder-{params["decoder"]["net"]}_' \
f'max_size-{params["image_height"]}-{params["image_width"]}'
print(model.name)
model = model.to(device)
if args.check:
writer = None
else:
writer = SummaryWriter(f'{params["log_dir"]}/{model.name}')
optimizer = getattr(torch.optim, params['optimizer'])(model.parameters(), lr=float(params['lr']),
eps=float(params['eps']), weight_decay=float(params['weight_decay']))
if params['finetune']:
print('loading pretrain model weight')
print(f'pretrain model: {params["checkpoint"]}')
load_checkpoint(model, optimizer, params['checkpoint'])
if not args.check:
if not os.path.exists(os.path.join(params['checkpoint_dir'], model.name)):
os.makedirs(os.path.join(params['checkpoint_dir'], model.name), exist_ok=True)
os.system(f'cp {args.config} {os.path.join(params["checkpoint_dir"], model.name, model.name)}.yaml')
min_score = 0
min_step = 0
for epoch in range(params['epoches']):
train_loss, train_word_score, train_node_score, train_expRate = train(params, model, optimizer, epoch, train_loader, writer=writer)
if epoch > 150:
eval_loss, eval_word_score, eval_node_score, eval_expRate = eval(params, model, epoch, eval_loader, writer=writer)
print(f'Epoch: {epoch+1} loss: {eval_loss:.4f} word score: {eval_word_score:.4f} struct score: {eval_node_score:.4f} '
f'ExpRate: {eval_expRate:.4f}')
if eval_expRate > min_score and not args.check:
min_score = eval_expRate
save_checkpoint(model, optimizer, eval_word_score, eval_node_score, eval_expRate, epoch+1,
optimizer_save=params['optimizer_save'], path=params['checkpoint_dir'])
min_step = 0
elif min_score != 0 and 'lr_decay' in params and params['lr_decay'] == 'step':
min_step += 1
if min_step > params['step_ratio']:
new_lr = optimizer.param_groups[0]['lr'] / params['step_decay']
if new_lr < params['lr'] / 1000:
print('lr is too small')
exit(-1)
for param_group in optimizer.param_groups:
param_group['lr'] = new_lr
min_step = 0