-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbig_model.py
157 lines (130 loc) · 5.28 KB
/
big_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import pandas as pd
import numpy as np
import tensorflow as tf
import os
import matplotlib.pyplot as plt
import seaborn as sns
import PIL
from typing import List
# EfficientNet
from tensorflow.keras.applications import EfficientNetB7, ResNet50
from tensorflow.keras.applications.efficientnet import preprocess_input
# Data Augmentation
from tensorflow.keras.preprocessing.image import ImageDataGenerator
# Model Layers
from tensorflow.keras import Model, Input
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Conv2D, MaxPool2D , Flatten, Dropout, BatchNormalization
# Compiling and Callbacks
from tensorflow.keras.optimizers import SGD,Adam
from tensorflow.keras.losses import BinaryCrossentropy
from tensorflow.keras.callbacks import ReduceLROnPlateau, ModelCheckpoint, EarlyStopping
#-----------------------------------------------------------------------------------------------------
# Competition Directory
comp_dir="/kaggle/input/ranzcr-clip-catheter-line-classification/"
# Get Training Data Labels
df_train=pd.read_csv(comp_dir+"train.csv").sample(frac=1).reset_index(drop=True)
# Get Training/Testing Data Paths
test_files = os.listdir(comp_dir+"test")
df_test = pd.DataFrame({"StudyInstanceUID": test_files})
image_size = 512
batch_size = 16
num_epochs = 12
learn_rate = 1e-03
df_train.StudyInstanceUID += ".jpg"
#-----------------------------------------------------------------------------------------------------
label_cols=df_train.columns.tolist()
label_cols.remove("StudyInstanceUID")
label_cols.remove("PatientID")
datagen=ImageDataGenerator(rescale=1./255.)
test_datagen=ImageDataGenerator(rescale=1./255.)
train_generator=datagen.flow_from_dataframe(
dataframe=df_train[:21000],
directory=comp_dir+"train",
x_col="StudyInstanceUID",
y_col=label_cols,
batch_size=batch_size,
seed=42,
shuffle=True,
color_mode="rgb",
class_mode="raw",
target_size=(image_size,image_size),
interpolation="bilinear")
valid_generator=test_datagen.flow_from_dataframe(
dataframe=df_train[21000:],
directory=comp_dir+"train",
x_col="StudyInstanceUID",
y_col=label_cols,
batch_size=batch_size,
seed=42,
shuffle=True,
color_mode="rgb",
class_mode="raw",
target_size=(image_size,image_size),
interpolation="bilinear")
test_generator=test_datagen.flow_from_dataframe(
dataframe=df_test,
directory=comp_dir+"test",
x_col="StudyInstanceUID",
batch_size=1,
seed=42,
shuffle=False,
color_mode="rgb",
class_mode=None,
target_size=(image_size,image_size),
interpolation="bilinear")
#-----------------------------------------------------------------------------------------------------
base_model = ResNet50(include_top=False,
weights=None,
input_shape=(image_size, image_size, 3))
base_model.load_weights("../input/keras-pretrained-models/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5", by_name=True)
base_model.trainable = False
#-----------------------------------------------------------------------------------------------------
inp = Input(shape = (image_size,image_size,3))
x = base_model(inp)
x = Flatten()(x)
output1 = Dense(1, activation = 'sigmoid')(x)
output2 = Dense(1, activation = 'sigmoid')(x)
output3 = Dense(1, activation = 'sigmoid')(x)
output4 = Dense(1, activation = 'sigmoid')(x)
output5 = Dense(1, activation = 'sigmoid')(x)
output6 = Dense(1, activation = 'sigmoid')(x)
output7 = Dense(1, activation = 'sigmoid')(x)
output8 = Dense(1, activation = 'sigmoid')(x)
output9 = Dense(1, activation = 'sigmoid')(x)
output10 = Dense(1, activation = 'sigmoid')(x)
output11 = Dense(1, activation = 'sigmoid')(x)
model = Model(inp,[output1,output2,output3,output4,output5,output6,output7,output8,output9,output10,output11])
sgd = SGD(lr=learn_rate, momentum=.9, nesterov=False)
model.compile(optimizer=sgd,
loss = ["binary_crossentropy" for i in range(11)],
metrics = ["accuracy"])
def generator_wrapper(generator):
for batch_x,batch_y in generator:
yield (batch_x,[batch_y[:,i] for i in range(11)])
STEP_SIZE_TRAIN = train_generator.n//train_generator.batch_size
STEP_SIZE_VALID = valid_generator.n//valid_generator.batch_size
STEP_SIZE_TEST = test_generator.n//test_generator.batch_size
history = model.fit_generator(generator=generator_wrapper(train_generator),
steps_per_epoch=STEP_SIZE_TRAIN,
validation_data=generator_wrapper(valid_generator),
validation_steps=STEP_SIZE_VALID,
epochs=num_epochs,verbose=2)
test_generator.reset()
pred = model.predict_generator(test_generator,
steps=STEP_SIZE_TEST,
verbose=1)
# Create Submission df
df_submission = pd.DataFrame(np.squeeze(pred)).transpose()
df_submission.rename(columns=dict(zip([str(i) for i in range(12)], label_cols)))
df_submission["StudyInstanceUID"] = test_files
df_submission.to_csv("submission.csv", index=False)
epochs = range(1,num_epochs)
plt.plot(history.history['loss'], label='Training Set')
plt.plot(history.history['val_loss'], label='Validation Data)')
plt.title('Training and Validation loss')
plt.ylabel('MAE')
plt.xlabel('Num Epochs')
plt.legend(loc="upper left")
plt.show()
plt.savefig("loss.png")