-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path2_Plot_NucFreqAroundSites.R
175 lines (142 loc) · 6.6 KB
/
2_Plot_NucFreqAroundSites.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
#This script is for plotting nucleotide frequency and motif around Tn5 insertion sites
setwd(dirname(rstudioapi::getActiveDocumentContext()$path))
#=========================================================================================
#1. This function is for plotting nucleotide frequency given frequency table
#=========================================================================================
plot_Nuc_freqs_around <- function(file, flank_window = 25, plot_type = "dinuc"){
#get plotting region from given flank_window
freq <- read.table(file)
prefix <- sub(".fa_nuc.txt","",file)
species <- sub("_.*","",file)
n <- ncol(freq)
st <- (n+1)/2 - flank_window
ed <- (n+1)/2 + flank_window
freq <- freq[,c(st:ed)]
#get plotting region from given flank_window (random file)
freq_ran <- read.table(paste0(species,".random_200bp_500000.fa_nuc.txt"))
n_ran <- ncol(freq_ran)
st_ran <- (n_ran-1)/2 - flank_window
ed_ran <- (n_ran-1)/2 + flank_window
freq_ran <- freq_ran[,c(st_ran:ed_ran)]
n <- ncol(freq)
rownames(freq) <- c("A","C","T","G")
colnames(freq) <- paste0(seq(-(n-1)/2,(n-1)/2))
colnames(freq_ran) <- paste0(seq(-(n-1)/2,(n-1)/2))
tmp1 <- t(freq_ran) %>% as.data.frame()
tmp1$position <- seq(-(n-1)/2,(n-1)/2)
tmp1$cond <- "Random"
tmp2 <- t(freq)%>% as.data.frame()
tmp2$position <- seq(-(n-1)/2,(n-1)/2)
tmp2$cond <- "true"
combined <- rbind(tmp1, tmp2)
combined$GC <- combined$G + combined$C
combined$AT <- combined$A + combined$T
if(plot_type == "dinuc"){
selected <- combined[,5:8]
} else if (plot == "mononuc"){
selected <- combined[,1:6]
}
selected_melt <- reshape2::melt(selected,c(c("cond","position")))
selected_melt$group <- paste0(selected_melt$cond,"_",selected_melt$variable)
#pdf(paste0(sub(".tab","",file),"_+-",flank,"bp.pdf"), height = 4, width = 16)
ggplot(selected_melt, aes(x = position, y = value,group = group, color = group)) +
geom_line(aes(linetype=cond)) +
ylim(0.2,0.8) +
theme_bw() +
labs(size= "Nitrogen", x="Relative position to Tn5 cut center (bp)", y = "Nucleotide frequency") +
theme(
plot.title = element_text(color="black", size=20, face="bold"),
axis.title.x = element_text(color="black", size=14, face="bold"),
axis.text.x = element_text(color="black", size=11, face="bold"),
axis.title.y = element_text(color="black", size=14, face="bold"),
axis.text.y = element_text(color="black", size=11, face="bold"),
legend.title = element_text(color="black", size=14, face="bold"),
legend.text = element_text(color="black", size=12, face="bold"),
strip.text.x = element_text(size = 14, face="bold")
)
}
#Plot Nuc
files <- list.files(path = "./", pattern = "*_nuc.txt")
for (file in files){
print(paste0("Processing Nuc ",file))
plot_Nuc_freqs_around(file,flank_window = 25, plot_type = "dinuc")
}
#=========================================================================================
#3. This function is for plotting MEME result - using exported 'Probability Matrix' file
#=========================================================================================
plot_MEME_PSSM <- function(file, flank_window = 5){
freqs <- read.table(file)
prefix <- sub(".txt","",file)
colnames(freqs) <- c("A","C","G","T")
freqs <- t(freqs)
st <- (ncol(freqs) + 1)/2 - flank_window
ed <- (ncol(freqs) + 1)/2 + flank_window
freqs <- freqs[,c(st:ed)]
colnames(freqs) <- seq(-flank_window,flank_window)
#GetConsensusSeq(freqs)
pdf(paste0(prefix,"_MEME_motif_bits.pdf"),height = 4,width = 8)
logomaker(freqs, type = "Logo", color_type = "per_row",
logo_control = list(main_fontsize=20, yscale_change=F,
xaxis_fontsize=10, xlab_fontsize=15, y_fontsize=15,
xlab = "Position relative to Tn5 cut sites (bp)",ylab = "Bits"),
colors = c(nuc_color[c(4,2,3,1)]))
dev.off()
}
#plot_MEME_result_txt(meme_file, species="Mouse")
plot_MEME_result_txt <- function(meme_file, species=NULL){
#Parse meme.txt result
prefix <- dirname(meme_file)
bn <- basename(dirname(meme_file))
motif <- readLines(meme_file)
num <- grep("MEME-1 position-specific probability matrix",motif)
w <- as.integer(str_extract(str_extract(motif[(num+2)],"w= [0-9]+"),"[0-9]+"))
if (w < 19){
num <- grep("MEME-2 position-specific probability matrix",motif)
w <- as.integer(str_extract(str_extract(motif[(num+2)],"w= [0-9]+"),"[0-9]+"))
}
if (w < 19){
num <- grep("MEME-3 position-specific probability matrix",motif)
w <- as.integer(str_extract(str_extract(motif[(num+2)],"w= [0-9]+"),"[0-9]+"))
}
Tn5_motif <- motif[(num+3):(num+2+w)]
freqs <- matrix(0,nrow = w,ncol = 4)
for (line in seq(1:length(Tn5_motif))){
x <- Tn5_motif[line]
freqs[line,] <- matrix(scan(text = x,quiet=T),nrow = 1,byrow = TRUE)[1,]
}
write.table(freqs,paste0(bn,"_Tn5_motif_1_freqs.txt"),quote = F,sep = "\t",col.names = F, row.names = F)
colnames(freqs) <- c("A","C","G","T")
freqs <- t(freqs)
flank <- w - (ncol(freqs) + 1)/2
colnames(freqs) <- seq(-flank,flank)
nuc_color <- c('#109648','#255C99', '#D62839','#F7B32B') #ACTG
if (!missing(species)){
if (species == "Fish"){bg <- c(0.317, 0.183, 0.183, 0.317)}
else if (species == "Fly"){bg <- c(0.29, 0.21, 0.21, 0.29)}
else if (species == "huffia"){bg <- c(0.403, 0.097, 0.097, 0.403)}
else if (species == "Human"){bg <- c(0.296, 0.204, 0.204, 0.296)}
else if (species == "maize"){bg <- c(0.266, 0.234, 0.234, 0.266)}
else if (species == "Mouse"){bg <- c(0.292, 0.208, 0.208, 0.292)}
else if (species == "Plant"){bg <- c(0.32, 0.18, 0.18, 0.32)}
else if (species == "Worm"){bg <- c(0.323, 0.177, 0.177, 0.323)}
} else {bg <- c(0.25, 0.25, 0.25, 0.25)}
names(bg) <- c("A", "C", "G", "T")
#GetConsensusSeq(freqs)
pdf(paste0(bn,"_MEME_motif_1_bits.pdf"), height = 4,width = 8)
logomaker(freqs, type = "Logo", color_type = "per_row", bg=bg,
logo_control = list(main_fontsize=20, yscale_change=F,
xaxis_fontsize=10, xlab_fontsize=15, y_fontsize=15,
xlab = "Position relative to Tn5 cut sites (bp)", ylab = "Bits"),
colors = c(nuc_color[c(4,2,3,1)]))
dev.off()
}
#Plot motif
dirs <- list.dirs(path = ".", full.names = F, recursive = F)
for (dir in dirs[3]){
print(paste0("Processing motif ",dir))
meme_files <- dir(path = dir, pattern = "meme.txt", full.names = T, recursive = T)
for (meme_file in meme_files){
print(meme_file)
plot_MEME_result_txt(meme_file, species = dir)
}
}