-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_mask_grid_sample.py
486 lines (417 loc) · 22.1 KB
/
train_mask_grid_sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
import os
from pytorch_lightning.utilities.distributed import rank_zero_only
from numpy.lib.utils import who
from models.rendering import render_rays_cross_ray
from opt import get_opts
import torch
import torch.nn as nn
from collections import defaultdict
from einops import rearrange
from torch.utils.data import DataLoader
from datasets import dataset_dict
from math import sqrt
import wandb
from models.nerf_decoder_stylenerf import get_renderer
from models.esrgan import get_esrgan_decoder
from models.nerf import *
from models.rendering import *
from models.linearStyleTransfer import encoder_sameoutputsize
from models.linearStyleTransfer import style_net
from models.lightweight_seg import Context_Guided_Network
from utils import *
# losses
from losses import loss_dict
# metrics
from metrics import *
# pytorch-lightning
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning import LightningModule, Trainer
from datasets import global_val
import random
def get_model(hparams_):
nerf_coarse = NeRF_sigma(typ='coarse', args=hparams_,
in_channels_xyz=6*hparams_.N_emb_xyz+3,
in_channels_dir=6*hparams_.N_emb_dir+3).cuda()
if hparams_.encode_c:
enc_cont = encoder_sameoutputsize(out_channel=hparams_.nerf_out_dim).cuda()
models_to_train += [enc_cont]
if hparams_.encode_a:
decoder=style_net(args=hparams_, residual_blocks=hparams_.decoder_num_res_blocks).cuda()
else:
decoder=get_renderer(hparams_).cuda()
models = {'coarse': nerf_coarse,"decoder":decoder}
if hparams_.N_importance > 0:
nerf_fine = NeRF_sigma('fine',args=hparams_,
in_channels_xyz=6*hparams_.N_emb_xyz+3,
in_channels_dir=6*hparams_.N_emb_dir+3,
encode_appearance=hparams_.encode_a,
in_channels_a=hparams_.N_a,
encode_random=hparams_.encode_random).cuda()
models['fine'] = nerf_fine
return models
class NeRFSystem(LightningModule):
def __init__(self, hparams_):
super().__init__()
self.hparams_ = hparams_
self.define_transforms()
self.loss = loss_dict['crnerf'](hparams_, coef=1)
self.models_to_train = []
self.embedding_xyz = PosEmbedding(hparams_.N_emb_xyz-1, hparams_.N_emb_xyz)
self.embedding_dir = PosEmbedding(hparams_.N_emb_dir-1, hparams_.N_emb_dir)
self.embedding_uv = PosEmbedding(10-1, 10)
self.embeddings = {'xyz': self.embedding_xyz,
'dir': self.embedding_dir}
if hparams_.encode_c:
self.enc_cont = encoder_sameoutputsize(out_channel=hparams_.nerf_out_dim)
self.models_to_train += [self.enc_cont]
if hparams_.encode_a:
self.enc_a = encoder_sameoutputsize(out_channel=hparams_.nerf_out_dim)
self.models_to_train += [self.enc_a]
self.embedding_a_list = [None] * hparams_.N_vocab
self.nerf_coarse = NeRF_sigma(typ='coarse', args=hparams_,
in_channels_xyz=6*hparams_.N_emb_xyz+3,
in_channels_dir=6*hparams_.N_emb_dir+3).cuda()
if hparams_.encode_a:
self.decoder=style_net(args=hparams_, residual_blocks=hparams_.decoder_num_res_blocks)
else:
self.decoder=get_renderer(hparams_).cuda()
self.models = {'coarse': self.nerf_coarse,"decoder":self.decoder}
if hparams_.N_importance > 0:
self.nerf_fine = NeRF_sigma('fine',args=hparams_,
in_channels_xyz=6*hparams_.N_emb_xyz+3,
in_channels_dir=6*hparams_.N_emb_dir+3,
encode_appearance=hparams_.encode_a,
in_channels_a=hparams_.N_a,
encode_random=hparams_.encode_random).cuda()
self.models['fine'] = self.nerf_fine
self.models_to_train += [self.models]
self.best_psnr=0
self.best_ssim=0
if hparams_.use_mask:
self.implicit_mask = Context_Guided_Network(classes= 1, M= 2, N= 2, input_channel=3)
self.models_to_train += [self.implicit_mask]
def define_transforms(self):
self.transform = T.ToTensor()
self.normalize = T.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
def get_progress_bar_dict(self):
items = super().get_progress_bar_dict()
items.pop("v_num", None)
return items
def decode(self, results, type, **kwargs):
if type!='content':
feature = results['feature_'+type] #torch.Size([699008, 4])
else:
feature = results['feature_fine'] #torch.Size([699008, 4])
lastdim = feature.size(-1)
feature = rearrange(feature, 'n1 n3 -> n3 n1', n3=lastdim)
feature = rearrange(feature, ' n3 (h w) -> 1 n3 h w', h=int(kwargs['H']), w=int(kwargs['W']),n3=lastdim) ##torch.Size([1, 64, 340, 514])
if type=="fine_random":
rgbs_pred = self.models['decoder'](feature, kwargs['a_embedded_random'])
elif type=="coarse":
rgbs_pred = self.models['decoder'](feature, kwargs['a_embedded_from_img'])
rgbs_pred = rearrange(rgbs_pred, ' 1 n1 h w -> (h w) n1', h=int(kwargs['H']), w=int(kwargs['W']), n1=3)
elif type=="fine":
rgbs_pred = self.models['decoder'](feature, kwargs['a_embedded_from_img'])
results['rgb_fine_img'] = rgbs_pred
rgbs_pred = rearrange(rgbs_pred, ' 1 n1 h w -> (h w) n1', h=int(kwargs['H']), w=int(kwargs['W']), n1=3)
elif type=="content":
rgbs_pred = self.models['decoder'](feature, None, type="content")
results['rgb_content_img'] = rgbs_pred
rgbs_pred = None
results['rgb_'+type] = rgbs_pred
return results
def forward(self, rays, ts, whole_img, W, H, rgb, rgb_idx, test_blender, args, hw_whole=None,val_mode=False):
results = defaultdict(list)
kwargs ={}
kwargs['args']=args
if self.hparams_.encode_a:
whole_img=(whole_img+1)/2 #convert range of whole_img from [-1,1] to [0,1] to match with sigmoid operation in style_net
if test_blender:
kwargs['a_embedded_from_img'] = self.embedding_a_list[0] if self.embedding_a_list[0] != None else self.enc_a(whole_img)
else:
kwargs['a_embedded_from_img'] = self.enc_a(whole_img)
if self.hparams_.encode_random:
idexlist = [k for k,v in enumerate(self.embedding_a_list) if v != None]
if len(idexlist) == 0:
kwargs['a_embedded_random'] = kwargs['a_embedded_from_img']
else:
kwargs['a_embedded_random'] = self.embedding_a_list[random.choice(idexlist)]
else:
kwargs['a_embedded_from_img']=None
kwargs['a_embedded_random']=None
if self.hparams_.use_mask:
pred_mask=self.implicit_mask(whole_img)
pred_mask= nn.functional.interpolate(pred_mask, size=hw_whole, mode='bilinear', align_corners=False)
pred_mask=rearrange(pred_mask,'1 n h w -> (h w) n')
if val_mode==False:
pred_mask=pred_mask[rgb_idx] ##grid sample strategy, refer to datasets/phototourism_mask_grid_sample for details of choosing rgb_idx
kwargs['mask_embedded_from_img']= pred_mask
"""Do batched inference on rays using chunk."""
B = rays.shape[0]
chunk_temp=self.hparams_.chunk
if val_mode==True:
chunk_temp=2048
kwargs["H"]=H
kwargs["W"]=W
for i in range(0, B, chunk_temp):
rendered_ray_chunks = \
render_rays_cross_ray(self.models,
self.embeddings,
rays[i:i+chunk_temp],
ts[i:i+chunk_temp],
self.hparams_.N_samples,
self.hparams_.use_disp,
self.hparams_.perturb,
self.hparams_.noise_std,
self.hparams_.N_importance,
chunk_temp,
self.train_dataset.white_back,
**kwargs) #obtaining cross ray feature
for k, v in rendered_ray_chunks.items():
results[k] += [v]
for k, v in results.items():
results[k] = torch.cat(v, 0)
results = self.decode(results,"coarse",**kwargs) ##cross ray appearance transfer and decode coarse rgb map of novel view
if self.hparams_.N_importance>0:
results = self.decode(results,"fine",**kwargs) ##cross ray appearance transfer and decode fine rgb map of novel view
if self.hparams_.encode_c:
results = self.decode(results,"content",**kwargs)
if self.hparams_.use_mask:
results['out_mask'] = kwargs['mask_embedded_from_img']
if self.hparams_.encode_a:
results['a_embedded'] = kwargs['a_embedded_from_img']
results['whole_img'] = whole_img
if self.hparams_.encode_random:
results['a_embedded_random'] = kwargs['a_embedded_random']
results = self.decode(results,"fine_random",**kwargs) ##decode fine rgb map of novel view from random embedding
results['a_embedded_random_rec'] = self.enc_a(results['rgb_fine_random']) ##encode random embedding from fine random rgb map, constrain the encoded embedding to be close to the embedding of the randomly choosen embedding->kwargs['a_embedded_random']
results['rgb_fine_random'] = rearrange(results['rgb_fine_random'], ' 1 n1 h w -> (h w) n1', h=int(kwargs['H']), w=int(kwargs['W']), n1=3)
self.embedding_a_list[ts[0]] = kwargs['a_embedded_from_img'].clone().detach()
if hparams_.encode_c:
results['content_with_a_embed']=self.enc_cont(results['rgb_fine_img'])
results['content_wo_a_embed']=self.enc_cont(results['rgb_content_img'])
return results
def setup(self, stage):
dataset = dataset_dict[self.hparams_.dataset_name]
kwargs = {'root_dir': self.hparams_.root_dir}
if self.hparams_.dataset_name == 'phototourism':
kwargs['img_downscale'] = self.hparams_.img_downscale
kwargs['val_num'] = self.hparams_.num_gpus
kwargs['use_cache'] = self.hparams_.use_cache
kwargs['batch_size'] = self.hparams_.batch_size
kwargs['scale_anneal'] = self.hparams_.scale_anneal
kwargs['min_scale'] = self.hparams_.min_scale
elif self.hparams_.dataset_name == 'blender':
kwargs['img_wh'] = tuple(self.hparams_.img_wh)
kwargs['perturbation'] = self.hparams_.data_perturb
kwargs['batch_size'] = self.hparams_.batch_size
kwargs['scale_anneal'] = self.hparams_.scale_anneal
kwargs['min_scale'] = self.hparams_.min_scale
if self.hparams_.useNeuralRenderer:
kwargs['NeuralRenderer_downsampleto'] = (self.hparams_.NRDS, self.hparams_.NRDS)
self.train_dataset = dataset(args=self.hparams_,split='train', **kwargs)
self.val_dataset = dataset(args=self.hparams_,split='val', **kwargs)
def configure_optimizers(self):
self.optimizer = get_optimizer(self.hparams_, self.models_to_train)
scheduler = get_scheduler(self.hparams_, self.optimizer)
return [self.optimizer], [scheduler]
def train_dataloader(self):
return DataLoader(self.train_dataset,
shuffle=False,
num_workers=4,
batch_size=1, # self.hparams_.batch_size a time
pin_memory=True)
def val_dataloader(self):
return DataLoader(self.val_dataset,
shuffle=False,
num_workers=4,
batch_size=1, # validate one image (H*W rays) at a time
pin_memory=True)
def training_step(self, batch, batch_nb):
rays, ts = batch['rays'].squeeze(), batch['ts'].squeeze()##image id in .tsv all id in list ts are the same
rgbs = batch['rgbs'].squeeze()
rgb_idx = batch['rgb_idx'].squeeze()
w_whole, h_whole=batch['img_wh'].squeeze()
if self.hparams_.encode_a or self.hparams_.use_mask:
whole_img = batch['whole_img']
rgb_idx = batch['rgb_idx']
else:
whole_img = None
rgb_idx = None
H = int(sqrt(rgbs.size(0)))
W = int(sqrt(rgbs.size(0)))
test_blender = False
results = self(rays, ts, whole_img, H ,W, rgbs, rgb_idx, test_blender, self.hparams_, hw_whole=(int(h_whole),int(w_whole)))
loss_d, AnnealingWeight = self.loss(results, rgbs, self.hparams_, self.global_step)#, masks_rcnn)
loss = sum(l for l in loss_d.values())
with torch.no_grad():
typ = 'fine' if 'rgb_fine' in results else 'coarse'
psnr_ = psnr(results[f'rgb_{typ}'], rgbs)
self.log('lr', get_learning_rate(self.optimizer))
self.log('train/loss', loss)
self.log('train/AnnealingWeight', AnnealingWeight)
self.log('train/min_scale_cur', batch['min_scale_cur'])
for k, v in loss_d.items():
self.log(f'train/{k}', v)
self.log('train/psnr', psnr_)
if (self.global_step + 1) % 5000 == 0 or (self.global_step + 1)==2 :
img = results[f'rgb_{typ}'].view(H, W, 3).permute(2, 0, 1).detach().cpu() # (3, H, W)
img_gt = rgbs.detach().view(H, W, 3).permute(2, 0, 1).squeeze().cpu() # (3, H, W)
if self.hparams_.use_mask:
mask = results['out_mask'].detach().view(H, W, 1).permute(2, 0, 1).repeat(3, 1, 1).cpu() # (3, H, W)
if 'rgb_fine_random' in results:
img_random = results[f'rgb_fine_random'].detach().view(H, W, 3).permute(2, 0, 1).cpu() # (3, H, W)
stack = [img_gt, img, img_random, mask]# (4, 3, H, W)
if 'rgb_content_img' in results:
img_content=results[f'rgb_content_img'].detach().view(H, W, 3).permute(2, 0, 1).cpu()
stack+=[img_content]
self.logger.experiment.log({ "samples": [wandb.Image(img) for img in stack]})
else:
stack = [img_gt, img, mask] # (3, 3, H, W)
if 'rgb_content_img' in results:
img_content=results[f'rgb_content_img'].detach().view(H, W, 3).permute(2, 0, 1).cpu()
stack+=[img_content]
self.logger.experiment.log({"samples": [wandb.Image(img) for img in stack]})
elif 'rgb_fine_random' in results:
img_random = results[f'rgb_fine_random'].detach().view(H, W, 3).permute(2, 0, 1).cpu() # (3, H, W)
stack = [img_gt, img, img_random] # (4, 3, H, W)
if 'rgb_content_img' in results:
img_content=results[f'rgb_content_img'].detach().view(H, W, 3).permute(2, 0, 1).cpu()
stack+=[img_content]
self.logger.experiment.log({ "samples": [wandb.Image(img) for img in stack]})
else:
stack = [img_gt, img] # (3, 3, H, W)
if 'rgb_content_img' in results:
img_content=results[f'rgb_content_img'].detach().view(H, W, 3).permute(2, 0, 1).cpu()
stack+=[img_content]
self.logger.experiment.log({ "samples": [wandb.Image(img) for img in stack]})
return loss
def validation_step(self, batch, batch_nb):
if self.current_epoch!=self.hparams_.num_epochs -1:
return 0
rays, ts = batch['rays'].squeeze(), batch['ts'].squeeze()
rgbs = batch['rgbs'].squeeze()
if self.hparams_.dataset_name == 'phototourism':
uv_sample = batch['uv_sample'].squeeze()
WH = batch['img_wh']
W, H = WH[0, 0].item(), WH[0, 1].item()
else:
W, H = self.hparams_.img_wh
uv_sample = None
if self.hparams_.encode_a or self.hparams_.use_mask:
if self.hparams_.dataset_name == 'phototourism':
whole_img = batch['whole_img']
else:
whole_img = rgbs.view(1, H, W, 3).permute(0, 3, 1, 2) * 2 - 1
rgb_idx = batch['rgb_idx']
else:
whole_img = None
rgb_idx = None
test_blender = (self.hparams_.dataset_name == 'blender')
results = self(rays, ts, whole_img, W, H, rgbs, uv_sample, test_blender, self.hparams_, hw_whole=(int(H),int(W)),val_mode=True)
loss_d, AnnealingWeight = self.loss(results, rgbs, self.hparams_, self.global_step)
loss = sum(l for l in loss_d.values())
log = {'val_loss': loss}
for k, v in loss_d.items():
log[k] = v
typ = 'fine' if 'rgb_fine' in results else 'coarse'
img = results[f'rgb_{typ}'].view(H, W, 3).permute(2, 0, 1).cpu() # (3, H, W)
img_gt = rgbs.view(H, W, 3).permute(2, 0, 1) # (3, H, W)
if batch_nb == 0 :
if self.hparams_.use_mask:
mask = results['out_mask'].detach().view(H, W, 1).permute(2, 0, 1).repeat(3, 1, 1).cpu() # (3, H, W)
if 'rgb_fine_random' in results:
img_random = results[f'rgb_fine_random'].detach().view(H, W, 3).permute(2, 0, 1).cpu() # (3, H, W)
stack = [img_gt.cpu(), img, img_random, mask] # (5, 3, H, W)
self.logger.experiment.log({ "samples": [wandb.Image(img) for img in stack]})
else:
stack = [img_gt.cpu(), img, mask]
self.logger.experiment.log({ "samples": [wandb.Image(img) for img in stack]})
elif 'rgb_fine_random' in results:
img_random = results[f'rgb_fine_random'].detach().view(H, W, 3).permute(2, 0, 1).cpu() # (3, H, W)
stack = [img_gt.cpu(), img, img_random] # (4, 3, H, W)
self.logger.experiment.log({
"samples": [wandb.Image(img)
for img in stack]
})
else:
stack = [img_gt.cpu(), img]# (3, 3, H, W)
self.logger.experiment.log({ "samples": [wandb.Image(img) for img in stack]})
psnr_ = psnr(results[f'rgb_{typ}'], rgbs)
gt_cpu=img_gt[None,...].cpu()
ssim_ = ssim(img[None,...], gt_cpu)
log['val_psnr'] = psnr_
log['val_ssim'] = ssim_
return log
def validation_epoch_end(self, outputs):
if self.current_epoch!=self.hparams_.num_epochs -1:
return 0
if len(outputs) == 1:
global_val.current_epoch = self.current_epoch
else:
global_val.current_epoch = self.current_epoch + 1
mean_loss = torch.stack([x['val_loss'] for x in outputs]).mean()
mean_psnr = torch.stack([x['val_psnr'] for x in outputs]).mean()
mean_ssim = torch.stack([x['val_ssim'] for x in outputs]).mean()
self.log('val/loss', mean_loss)
self.log('val/psnr', mean_psnr, prog_bar=True)
self.log('val/ssim', mean_ssim, prog_bar=True)
self.log('epoch',self.current_epoch)
if self.hparams_.use_mask:
self.log('val/c_l', torch.stack([x['c_l'] for x in outputs]).mean())
self.log('val/f_l', torch.stack([x['f_l'] for x in outputs]).mean())
def main(hparams_):
system = NeRFSystem(hparams_)
checkpoint_callback = \
ModelCheckpoint(dirpath=os.path.join(hparams_.save_dir,
f'ckpts/{hparams_.exp_name}'),
save_last=True)
if hparams_.testit:
from pytorch_lightning.loggers import WandbLogger
wandb_logger = WandbLogger(name=hparams_.exp_name,project=hparams_.proj_name, save_dir=hparams_.wandbsavepath,offline=False)
logger1=wandb_logger
else:
from pytorch_lightning.loggers import WandbLogger
wandb_logger = WandbLogger(name=hparams_.exp_name,project=hparams_.proj_name, save_dir=hparams_.wandbsavepath,offline=False)
logger1=wandb_logger
trainer = Trainer(max_epochs=hparams_.num_epochs,
callbacks=checkpoint_callback,
resume_from_checkpoint=hparams_.ckpt_path,
logger=logger1,
strategy="ddp_find_unused_parameters_false",
gpus= hparams_.num_gpus,
accelerator='cuda',
num_sanity_val_steps=-1,
benchmark=True,
profiler="simple" if hparams_.num_gpus==1 else None)
trainer.fit(system)
wandb.finish()
@rank_zero_only
def save_code(hparams_):
import datetime
import shutil
from distutils.dir_util import copy_tree
experiment_dir = os.path.join(hparams_.save_dir,'logs',hparams_.exp_name,"codes")
copy_tree('models/', experiment_dir+"/models")
copy_tree('datasets/', experiment_dir+"/datasets")
copy_tree('utils/', experiment_dir+"/utils")
try:shutil.copy('command/train.sh', experiment_dir)
except:shutil.copy('train.sh', experiment_dir)
shutil.copy('train_mask_grid_sample.py', experiment_dir)
shutil.copy('losses.py', experiment_dir)
shutil.copy('eval.py',experiment_dir)
shutil.copy('eval_metric.py', experiment_dir)
shutil.copy('opt.py', experiment_dir)
shutil.copy('metrics.py', experiment_dir)
logstr=str(hparams_)
with open(experiment_dir+"/command.txt",'w') as f:
f.writelines(logstr)
if __name__ == '__main__':
import os
# os.environ["CUDA_VISIBLE_DEVICES"] = "6"
hparams_ = get_opts()
print(hparams_.exp_name)
if hparams_.testit:
hparams_.num_epochs=1
save_code(hparams_)
main(hparams_)