-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
212 lines (192 loc) · 9.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import argparse
from re import I
from stat import UF_OPAQUE
from tqdm import tqdm
import math
import os
import torch
from torch.utils.data import DataLoader
from pytorch_lightning.loggers import WandbLogger
import pytorch_lightning as pl
from pytorch_lightning import seed_everything
from pytorch_lightning.utilities.model_summary import ModelSummary
from pytorch_lightning.callbacks import ModelCheckpoint
PI = math.pi
device = "cuda" if torch.cuda.is_available() else "cpu"
# -------------------------------- main function
if __name__ == "__main__":
seed_everything(0, workers=True)
# -------------------------------- args for training and models ---------------------
parser = argparse.ArgumentParser()
parser.add_argument('--root_dir', dest='root_dir', type=str,
help='directory of training dataset')
parser.add_argument('--load_ckpt', dest='load_ckpt', type=str, default=False,
help='load pretrained lightning ckpt')
parser.add_argument('--train_ray_num', dest='train_ray_num', type=int, default=1024,
help='ray number in one image')
parser.add_argument('--lr', dest='lr', type=float, default=0.0001,
help='learning rate')
parser.add_argument('--batch_size', dest='batch_size', type=int, default=2,
help='batch size')
parser.add_argument('--max_epochs', dest='max_epochs', type=int, default=16,
help='max num of epochs')
parser.add_argument('--val_only', dest='val_only', action="store_true",
help='only validate')
parser.add_argument('--volume_reso', dest='volume_reso', type=int, default=96,
help="3D feature volume resolution") # set as 0 to disable
parser.add_argument('--coarse_sample', dest='coarse_sample', type=int, default=64,
help='number of coarse samples during training')
parser.add_argument('--fine_sample', dest='fine_sample', type=int, default=64,
help='number of fine samples during training')
parser.add_argument('--devices', dest='devices', type=str, default="0,1,2,3",
help='the devices choose for training')
# loss weights
# loss and optimizer hyperparams
parser.add_argument("--coarse_weight_decay", type=float, default=0.1)
parser.add_argument("--lr_init", type=float, default=5e-3)
parser.add_argument("--lr_final", type=float, default=5e-5)
parser.add_argument("--lr_delay_steps", type=int, default=3)
parser.add_argument("--scan", type=int, default=None)
parser.add_argument("--lr_delay_mult", type=float, default=0.1)
parser.add_argument("--weight_decay", type=float, default=1e-5)
parser.add_argument("--grad_clip_norm", type=float, default=0.001)
parser.add_argument('--weight_rgb', dest='weight_rgb', type=float, default=1.0)
parser.add_argument('--weight_depth', dest='weight_depth', type=float, default=0.)
parser.add_argument('--weight_sparse', dest='weight_sparse', type=float, default=0.)
parser.add_argument('--exp_name', default='test', help='the exp_dir to save checkpoints/logs')
# -------------------------------- args for testing --------------------------------
parser.add_argument('--test_dir', dest='test_dir', type=str,
help='directory of test dataset')
parser.add_argument('--out_dir', dest='out_dir', type=str,
help='directory of to save test result')
parser.add_argument('--extract_geometry', dest='extract_geometry', action='store_true',
help='if you only want to extract geometry')
parser.add_argument('--dense_recon', action="store_true",help='reconstruction use full 49 images')
parser.add_argument('--full_virtual_render', dest='full_virtual_render', action="store_true",
help='render 49 virtual views')
parser.add_argument('--use_ref_view', dest='use_ref_view', action="store_true",
help='include ref view for rendering')
parser.add_argument('--occ_trans', dest='occ_trans', action='store_true',
help='occ transformer')
parser.add_argument('--out_weights', dest='out_weights', action='store_true',
help='output_weights')
parser.add_argument('--test_ray_num', dest='test_ray_num', type=int, default=1200)
parser.add_argument('--test_sample_coarse', dest='test_sample_coarse', type=int, default=64)
parser.add_argument('--test_sample_fine', dest='test_sample_fine', type=int, default=64)
parser.add_argument('--test_coarse_only', dest='test_coarse_only', action="store_true",
help='only use coarse samples during testing')
parser.add_argument('--test_n_view', dest='test_n_view', type=int, default=3)
parser.add_argument('--set', dest='set', type=int, default=0,
help='two sets are provided by SparseNeuS')
parser.add_argument("--debug", action="store_true")
parser.add_argument("--use_49_views", action="store_true", default=True)
parser.add_argument('--use_res_color', action="store_true",
help='use color from src view to predict')
parser.add_argument('--ori_size', action="store_true",
help='use ori_size')
args = parser.parse_args()
if args.occ_trans:
from code.model import ReTR
print('Using OCC transformer... ')
batch_size = args.batch_size
num_workers = 12
if args.use_49_views:
selected_pair_filepath = 'code/dataset/dtu/pair.txt'
if args.debug:
devices = [0]
else:
devices = args.devices
if args.ori_size:
img_wh = (1600, 1200)
print(f'using original image size, {img_wh}')
else:
img_wh = [800, 600]
args.logdir = os.path.join("./ckpts", args.exp_name)
os.makedirs(args.logdir, exist_ok=True)
# -------------------------------- dataset ----------------------------------------
if not args.extract_geometry:
# training
from code.dataset.dtu_train import MVSDataset
dtu_dataset_train = MVSDataset(
root_dir=args.root_dir,
split="train",
split_filepath="code/dataset/dtu/lists/train.txt",
pair_filepath=selected_pair_filepath,
n_views=5,
)
dtu_dataset_val = MVSDataset(
root_dir=args.root_dir,
split="test",
split_filepath="code/dataset/dtu/lists/test.txt",
pair_filepath=selected_pair_filepath,
n_views=5,
test_ref_views = [23], # only use view 23
)
print("dtu_dataset_train:", len(dtu_dataset_train))
print("dtu_dataset_val:", len(dtu_dataset_val))
dataloader_train = DataLoader(dtu_dataset_train,
batch_size=batch_size,
num_workers=num_workers,
shuffle=True)
dataloader_val = DataLoader(dtu_dataset_val,
batch_size=batch_size,
num_workers=num_workers,
shuffle=False)
else:
# testing on dtu
dataloader_test = []
from code.dataset.dtu_test_sparse import DtuFitSparse
print('Sparse view recon... run Table 1 results... ')
if args.scan is not None:
scan_list = [args.scan]
else:
scan_list = [24, 37, 40, 55, 63, 65, 69, 83, 97, 105, 106, 110, 114, 118, 122]
for scan in scan_list:
dataset_tmp = DtuFitSparse(root_dir=args.test_dir,
split="test",
scan_id='scan%d'%scan,
pair_filepath=selected_pair_filepath,
full_virtual_render=args.full_virtual_render,
img_wh=img_wh, use_ref_view=args.use_ref_view,
n_views=args.test_n_view)
dataloader_tmp = DataLoader(dataset_tmp,
batch_size=1,
num_workers=2,
shuffle=False)
dataloader_test.append(dataloader_tmp)
# -------------------------------- lightning module -------------------------------
if args.load_ckpt:
retr = ReTR.load_from_checkpoint(checkpoint_path=args.load_ckpt, args=args)
print("Model loaded:", args.load_ckpt)
else:
retr = ReTR(args)
logger = WandbLogger(
project="retr",
name = args.exp_name,
save_dir = args.logdir,
offline=args.debug,
)
# -------------------------------- trainer ---------------------------------------
trainer = pl.Trainer(
accelerator="gpu" if device=="cuda" else "cpu",
devices=devices,
max_epochs=args.max_epochs,
check_val_every_n_epoch=1,
logger=logger,
num_sanity_val_steps=1,
gradient_clip_val=args.grad_clip_norm,
)
print(f'coarse and fine sample points {args.coarse_sample}, {args.fine_sample}, {args.test_sample_coarse}, {args.test_sample_fine}')
ModelSummary(retr, max_depth=1)
# -------------------------------- train or/and testing --------------------------------
if not args.extract_geometry:
if args.val_only:
print("[only validation]")
trainer.validate(retr, dataloader_train)
else:
print("[start training]")
trainer.fit(retr, dataloader_train, dataloader_val)
else:
for dataloader_test1 in tqdm(dataloader_test):
trainer.validate(retr, dataloader_test1)
print("end")