-
Notifications
You must be signed in to change notification settings - Fork 0
/
ds_train.py
622 lines (530 loc) · 23.7 KB
/
ds_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
import logging
import math
import os
from logging import StreamHandler
from typing import Optional, Union
import deepspeed
import numpy as np
import pandas as pd
import torch
import torch.distributed as dist
import wandb
from arguments.training_args import TrainingArguments
from networks.models import Net
from setproctitle import setproctitle
from simple_parsing import ArgumentParser
from sklearn.preprocessing import MinMaxScaler
from torch.utils.data import DistributedSampler, random_split
from torch_optimizer import Adafactor
from trainer.deepspeed import Trainer
from utils.comfy import (
dataclass_to_namespace,
json_to_dict,
seed_everything,
update_auto_nested_dict,
apply_to_collection,
web_log_every_n,
tensor_dict_to_device,
)
from utils.data.custom_dataloader import CustomDataLoader
from utils.data.custom_sampler import DistributedLengthGroupedSampler
from utils.data.np_dataset import NumpyDataset
from torch.cuda.amp import autocast
# it is only lstm example.
torch.backends.cudnn.enabled = False
logger = logging.getLogger()
logger.setLevel(logging.INFO)
formatter = logging.Formatter("%(asctime)s [%(levelname)8s] %(message)s")
timeFileHandler = StreamHandler()
timeFileHandler.setFormatter(formatter)
logger.addHandler(timeFileHandler)
# TODO(User): override training_step and eval_loop for your style
class DSTrainer(Trainer):
def __init__(
self,
device_id,
criterion,
eval_metric=None,
precision="fp32",
cmd_logger=None,
web_logger=None,
max_epochs: Optional[int] = 1000,
max_steps: Optional[int] = None,
grad_accum_steps: int = 1,
limit_train_batches: Union[int, float] = float("inf"),
limit_val_batches: Union[int, float] = float("inf"),
validation_frequency: int = 1,
checkpoint_dir: str = "./checkpoints",
checkpoint_frequency: int = 1,
chk_addr_dict: dict = None,
non_blocking: bool = True,
log_every_n: int = 1,
max_norm: float = 0.0,
metric_on_cpu: bool = False,
):
super().__init__(
device_id,
criterion,
eval_metric,
precision,
cmd_logger,
web_logger,
max_epochs,
max_steps,
grad_accum_steps,
limit_train_batches,
limit_val_batches,
validation_frequency,
checkpoint_dir,
checkpoint_frequency,
chk_addr_dict,
non_blocking,
log_every_n,
max_norm,
metric_on_cpu,
)
def training_step(self, model, batch, batch_idx) -> torch.Tensor:
"""A single training step, running forward and backward. The optimizer step is called separately, as this is
given as a closure to the optimizer step.
Args:
model: model to train
batch: the batch to run the forward on
batch_idx: index of the current batch w.r.t the current epoch
"""
# TODO(User): fit the input and output for your model architecture!
with autocast(enabled=self.mixed_precision, dtype=self.precision):
labels = batch.pop("labels")
# SUPER IMPORTANT, Deepspeed auto_cast is only working on `*args` not `**kwargs`!!!!
output = model(**batch)
loss = self.criterion(output, labels)
def on_before_backward(loss):
pass
on_before_backward(loss)
model.backward(loss)
def on_after_backward():
pass
on_after_backward()
log_output = {"loss": loss}
# avoid gradients in stored/accumulated values -> prevents potential OOM
self._current_train_return = apply_to_collection(log_output, dtype=torch.Tensor, function=lambda x: x.detach())
web_log_every_n(
self.web_logger,
{
"train/loss": self._current_train_return["loss"],
"train/step": self.step,
"train/global_step": self.global_step,
"train/epoch": self.current_epoch,
},
self.step,
self.log_every_n,
self.device_id,
)
return loss
def eval_loop(
self,
model,
val_loader: Optional[torch.utils.data.DataLoader],
limit_batches: Union[int, float] = float("inf"),
):
"""The validation loop ruunning a single validation epoch.
Args:
model: model
val_loader: The dataloader yielding the validation batches.
limit_batches: Limits the batches during this validation epoch.
If greater than the number of batches in the ``val_loader``, this has no effect.
"""
# no validation if val_loader wasn't passed
if val_loader is None:
return
def on_start_eval(model):
model.eval()
# requires_grad = True, but loss.backward() raised error
# because grad_fn is None
torch.set_grad_enabled(False)
on_start_eval(model)
def on_validation_epoch_start():
pass
if self.device_id == 0:
iterable = self.progbar_wrapper(val_loader, total=min(len(val_loader), limit_batches), desc="Validation")
pbar = enumerate(iterable)
else:
pbar = enumerate(val_loader)
eval_step = 0
tot_batch_logits = list()
tot_batch_labels = list()
if self.metric_on_cpu:
metric_on_device = torch.device("cpu")
else:
metric_on_device = self.device
for batch_idx, batch in pbar:
# I tried to output the most accurate LOSS to WANDB with ALL_GATHER for all LOSS sections,
# but it was not much different from outputting the value of GPU 0.
# Therefore, all sections except EVAL EPOCH END only output the value of rank 0.
tensor_dict_to_device(batch, self.device, non_blocking=self.non_blocking)
# I use distributed dataloader and wandb log only rank:0, and epoch loss all gather
# end epoch if stopping training completely or max batches for this epoch reached
if self.should_stop or batch_idx >= limit_batches:
break
def on_validation_batch_start(batch, batch_idx):
pass
on_validation_batch_start(batch, batch_idx)
# TODO(User): fit the input and output for your model architecture!
with autocast(enabled=self.mixed_precision, dtype=self.precision):
# if self.precision == torch.bfloat16:
# tensor_dict_to_dtype(batch, self.precision)
labels = batch.pop("labels")
outputs = model(**batch)
loss = self.criterion(outputs, labels)
# TODO(User): what do you want to log items every epoch end?
tot_batch_logits.append(outputs.to(metric_on_device))
tot_batch_labels.append(labels.to(metric_on_device))
log_output = {"loss": loss}
# avoid gradients in stored/accumulated values -> prevents potential OOM
self._current_val_return = apply_to_collection(
log_output, torch.Tensor, lambda x: x.detach().to(metric_on_device)
)
def on_validation_batch_end(eval_out, batch, batch_idx):
pass
on_validation_batch_end(outputs, batch, batch_idx)
web_log_every_n(
self.web_logger,
{
"eval_step/loss": self._current_val_return["loss"],
"eval_step/step": eval_step,
"eval_step/global_step": self.global_step,
"eval_step/epoch": self.current_epoch,
},
eval_step,
self.log_every_n,
self.device_id,
)
if self.device_id == 0:
self._format_iterable(iterable, self._current_val_return, "val")
eval_step += 1
# TODO(User): Create any form you want to output to wandb!
def on_validation_epoch_end(tot_batch_logits, tot_batch_labels, metric_device):
# if you want to see all_reduce example, see `fsdp_train.py`'s eval_loop
tot_batch_logits = torch.cat(tot_batch_logits, dim=0)
tot_batch_labels = torch.cat(tot_batch_labels, dim=0)
# all_gather` requires a `fixed length tensor` as input.
# Since the length of the data on each GPU may be different, the length should be passed to `all_gather` first.
local_size = torch.tensor([tot_batch_logits.size(0)], dtype=torch.long, device=metric_device)
size_list = [
torch.tensor([0], dtype=torch.long, device=metric_device) for _ in range(dist.get_world_size())
]
if metric_device == torch.device("cpu"):
dist.all_gather_object(size_list, local_size)
else:
dist.all_gather(size_list, local_size)
# Create a fixed length tensor with the length of `all_gather`.
logits_gathered_data = [
torch.zeros(
(size.item(), tot_batch_logits.size(-1)), dtype=tot_batch_logits.dtype, device=metric_device
)
for size in size_list
]
labels_gathered_data = [
torch.zeros(
(size.item(), tot_batch_labels.size(-1)), dtype=tot_batch_labels.dtype, device=metric_device
)
for size in size_list
]
# Collect and match data from all GPUs.
if metric_device == torch.device("cpu"):
# Collect and match data from all GPUs.
dist.all_gather_object(logits_gathered_data, tot_batch_logits)
dist.all_gather_object(labels_gathered_data, tot_batch_labels)
else:
dist.all_gather(logits_gathered_data, tot_batch_logits)
dist.all_gather(labels_gathered_data, tot_batch_labels)
# example 4 gpus : [gpu0[tensor],gpu1[tensor],gpu2[tensor],gpu3[tensor]]
logits_gathered_data = torch.cat(logits_gathered_data, dim=0)
labels_gathered_data = torch.cat(labels_gathered_data, dim=0)
epoch_loss = self.criterion(logits_gathered_data, labels_gathered_data)
epoch_rmse = torch.sqrt(epoch_loss)
# epoch monitoring is must doing every epoch
web_log_every_n(
self.web_logger,
{"eval/loss": epoch_rmse, "eval/epoch": self.current_epoch},
self.current_epoch,
1,
self.device_id,
)
on_validation_epoch_end(tot_batch_logits, tot_batch_labels, metric_on_device)
def on_validation_model_train(model):
torch.set_grad_enabled(True)
model.train()
on_validation_model_train(model)
def main(hparams: TrainingArguments):
# reference: https://www.kaggle.com/code/anitarostami/lstm-multivariate-forecasting
setproctitle(os.environ.get("WANDB_PROJECT", "torch-trainer"))
seed_everything(hparams.seed)
world_size = int(os.environ.get("WORLD_SIZE", -1))
rank = int(os.environ.get("RANK", -1))
local_rank = int(os.environ.get("LOCAL_RANK", -1))
logger.info(
f"Start running basic deepspeed example on total {world_size} computers, {rank}'s process on {local_rank}'s gpu."
)
assert world_size > -1 and rank > -1 and local_rank > -1, "Your distributed environ is wrong, plz check and retry!"
torch.cuda.set_device(local_rank)
deepspeed.init_distributed("nccl", rank=rank, world_size=world_size)
web_logger = None
if local_rank == 0:
web_logger = wandb.init(config=hparams)
df_train = pd.read_csv(hparams.train_datasets_path, header=0, encoding="utf-8")
# Kaggle author Test Final RMSE: 0.06539
df_eval = pd.read_csv(hparams.eval_datasets_path, header=0, encoding="utf-8")
df_train_scaled = df_train.copy()
df_test_scaled = df_eval.copy()
# Define the mapping dictionary
mapping = {"NE": 0, "SE": 1, "NW": 2, "cv": 3}
# Replace the string values with numerical values
df_train_scaled["wnd_dir"] = df_train_scaled["wnd_dir"].map(mapping)
df_test_scaled["wnd_dir"] = df_test_scaled["wnd_dir"].map(mapping)
df_train_scaled["date"] = pd.to_datetime(df_train_scaled["date"])
# Resetting the index
df_train_scaled.set_index("date", inplace=True)
logger.info(df_train_scaled.head())
scaler = MinMaxScaler()
# Define the columns to scale
columns = ["pollution", "dew", "temp", "press", "wnd_dir", "wnd_spd", "snow", "rain"]
df_test_scaled = df_test_scaled[columns]
# Scale the selected columns to the range 0-1
df_train_scaled[columns] = scaler.fit_transform(df_train_scaled[columns])
df_test_scaled[columns] = scaler.transform(df_test_scaled[columns])
# Show the scaled data
logger.info(df_train_scaled.head())
df_train_scaled = np.array(df_train_scaled)
df_test_scaled = np.array(df_test_scaled)
x = []
y = []
n_future = 1
n_past = 11
# Train Sets
for i in range(n_past, len(df_train_scaled) - n_future + 1):
x.append(df_train_scaled[i - n_past : i, 1 : df_train_scaled.shape[1]])
y.append(df_train_scaled[i + n_future - 1 : i + n_future, 0])
x_train, y_train = np.array(x), np.array(y)
# Test Sets
x = []
y = []
for i in range(n_past, len(df_test_scaled) - n_future + 1):
x.append(df_test_scaled[i - n_past : i, 1 : df_test_scaled.shape[1]])
y.append(df_test_scaled[i + n_future - 1 : i + n_future, 0])
x_test, y_test = np.array(x), np.array(y)
logger.info(
"X_train shape : {} y_train shape : {} \n"
"X_test shape : {} y_test shape : {} ".format(x_train.shape, y_train.shape, x_test.shape, y_test.shape)
)
train_dataset = NumpyDataset(
x_train,
y_train,
feature_column_name=hparams.feature_column_name,
labels_column_name=hparams.labels_column_name,
)
eval_dataset = NumpyDataset(
x_test,
y_test,
feature_column_name=hparams.feature_column_name,
labels_column_name=hparams.labels_column_name,
)
if hparams.group_by_length:
custom_train_sampler = DistributedLengthGroupedSampler(
batch_size=hparams.per_device_train_batch_size,
dataset=train_dataset,
rank=rank,
seed=hparams.seed,
model_input_name=train_dataset.length_column_name,
)
custom_eval_sampler = DistributedLengthGroupedSampler(
batch_size=hparams.per_device_eval_batch_size,
dataset=eval_dataset,
rank=rank,
seed=hparams.seed,
model_input_name=eval_dataset.length_column_name,
)
else:
# DistributedSampler's shuffle: each device get random indices data segment in every epoch
custom_train_sampler = DistributedSampler(
train_dataset, seed=hparams.seed, rank=rank, shuffle=hparams.sampler_shuffle
)
custom_eval_sampler = DistributedSampler(eval_dataset, seed=hparams.seed, rank=rank, shuffle=False)
# DataLoader's shuffle: one device get random indices dataset in every epoch
# example np_dataset is already set (feature)7:1(label), so, it can be all shuffle `True` between sampler and dataloader
train_dataloader = CustomDataLoader(
dataset=train_dataset,
feature_column_name=hparams.feature_column_name,
labels_column_name=hparams.labels_column_name,
batch_size=hparams.per_device_train_batch_size,
sampler=custom_train_sampler,
num_workers=hparams.num_workers,
drop_last=hparams.dataloader_drop_last,
pin_memory=True,
persistent_workers=True,
)
eval_dataloader = CustomDataLoader(
dataset=eval_dataset,
feature_column_name=hparams.feature_column_name,
labels_column_name=hparams.labels_column_name,
batch_size=hparams.per_device_eval_batch_size,
sampler=custom_eval_sampler,
num_workers=hparams.num_workers,
drop_last=hparams.dataloader_drop_last,
pin_memory=True,
persistent_workers=True,
)
# dataloader already calculate len(total_data) / (batch_size * dist.get_world_size())
# accumulation is always floor
steps_per_epoch = math.floor(len(train_dataloader) / hparams.accumulate_grad_batches)
# Instantiate objects
model = Net().cuda(local_rank)
if local_rank == 0:
web_logger.watch(model, log_freq=hparams.log_every_n)
optimizer = None
initial_lr = hparams.learning_rate / hparams.div_factor
# if using OneCycleLR, optim lr is not important,
# torch native, lr update to start_lr automatically
# deepspeed, lr update to end_lr automatically
# optimizer = Adafactor(
# model.parameters(),
# lr=hparams.learning_rate,
# beta1=hparams.optim_beta1,
# weight_decay=hparams.weight_decay,
# )
# If you use torch optim and scheduler, It can have unexpected behavior. The current implementation is written for the worst case scenario.
# For some reason, I was found that `loss` is not `auto_cast`, so in the current example, `auto_cast` manually.
# and BF16 `auto_cast` is not supported now (https://github.com/microsoft/DeepSpeed/issues/4772) it is manually implement too.
# The optimizer will use zero_optimizer as normal, and the grad_scaler is expected to behave normally, since the id check is done.
# https://github.com/microsoft/DeepSpeed/issues/4908
optimizer = torch.optim.AdamW(
model.parameters(),
lr=hparams.learning_rate,
eps=hparams.optim_eps,
betas=(hparams.optim_beta1, hparams.optim_beta2),
weight_decay=hparams.weight_decay,
)
cycle_momentum = True
if isinstance(optimizer, Adafactor):
cycle_momentum = False
# TODO(user): If you want to using deepspeed lr_scheduler, change this code line
# max_lr = hparams.learning_rate
# initial_lr = hparams.learning_rate / hparams.div_factor
# min_lr = hparams.learning_rate / hparams.final_div_factor
scheduler = None
scheduler = torch.optim.lr_scheduler.OneCycleLR(
optimizer,
max_lr=hparams.learning_rate,
pct_start=hparams.warmup_ratio,
epochs=hparams.max_epochs,
div_factor=hparams.div_factor,
final_div_factor=hparams.final_div_factor,
steps_per_epoch=steps_per_epoch,
cycle_momentum=cycle_momentum,
)
# If you want to using own optimizer and scheduler,
# check config `zero_allow_untested_optimizer` and `zero_force_ds_cpu_optimizer`
ds_config = json_to_dict(hparams.deepspeed_config)
update_auto_nested_dict(ds_config, "lr", initial_lr)
update_auto_nested_dict(ds_config, "train_micro_batch_size_per_gpu", hparams.per_device_train_batch_size)
update_auto_nested_dict(ds_config, "gradient_accumulation_steps", hparams.accumulate_grad_batches)
if "fp16" in ds_config.keys() and ds_config["fp16"]["enabled"]:
hparams.model_dtype = "fp16"
elif "bf16" in ds_config.keys() and ds_config["bf16"]["enabled"]:
hparams.model_dtype = "bf16"
else:
hparams.model_dtype = "fp32"
# Since the deepspeed lr scheduler is, after all, just a generic object-inherited custom scheduler, Only authorize the use of torch scheduler.
# Also, the ZeroOptimizer.param_groups address is the same as the torch scheduler.optimizer.param_groups address.
# Therefore, there is absolutely no reason to use the lr_scheduler provided by Deepspeed.
assert (
scheduler is not None or "scheduler" not in ds_config.keys()
), "Don't use Deepspeed Scheduler!!!!, It is so confused. Plz implement something!"
if optimizer is not None:
from deepspeed.runtime.zero.utils import is_zero_supported_optimizer
if not is_zero_supported_optimizer(optimizer):
ds_config.update({"zero_allow_untested_optimizer": True})
if "zero_optimization" in ds_config.keys():
if "offload_optimizer" in ds_config["zero_optimization"].keys():
# custom optimizer and using cpu offload
ds_config.update({"zero_force_ds_cpu_optimizer": False})
# 0: model, 1: optimizer, 2: dataloader, 3: lr scheduler가 나온다
# dataloader는 deepspeed에서 권장하는 세팅이지만, 어짜피 distributedsampler 적용된 놈이 나온다.
# if optimizer and scheduler is None, it is initialized by ds_config
model, optimizer, _, _ = deepspeed.initialize(
model=model,
optimizer=optimizer,
lr_scheduler=None,
dist_init_required=True,
config=ds_config,
)
# monitor: ReduceLROnPlateau scheduler is stepped using loss, so monitor input train or val loss
lr_scheduler = {"scheduler": scheduler, "interval": "step", "frequency": 1, "monitor": None}
assert id(scheduler) == id(lr_scheduler["scheduler"]), "scheduler mismatch! plz check!!!!"
assert (
id(optimizer.param_groups[0])
== id(lr_scheduler["scheduler"].optimizer.param_groups[0])
== id(model.optimizer.param_groups[0])
), "optimizer is something changed check id!"
criterion = torch.nn.MSELoss()
trainable_loss = None
# I think some addr is same into trainer init&fit respectfully
chk_addr_dict = {
"train_dataloader": id(train_dataloader),
"eval_dataloader": id(eval_dataloader),
"model": id(model),
"optimizer": id(optimizer.param_groups),
"criterion": id(criterion),
"scheduler_cfg": id(lr_scheduler),
"scheduler_cfg[scheduler]": id(lr_scheduler["scheduler"]),
"scheduler_cfg[scheduler].optimizer.param_groups": id(lr_scheduler["scheduler"].optimizer.param_groups),
"trainable_loss": id(trainable_loss),
}
log_str = f"""\n##########################################
train_dataloader addr: {chk_addr_dict["train_dataloader"]}
eval_dataloader addr: {chk_addr_dict["eval_dataloader"]}
model addr: {chk_addr_dict["model"]}
optimizer addr: {chk_addr_dict["optimizer"]}
criterion addr: {chk_addr_dict["criterion"]}
scheduler_cfg addr: {chk_addr_dict["scheduler_cfg"]}
scheduler addr: {chk_addr_dict["scheduler_cfg[scheduler]"]}
scheduler's optimizer value addr: {chk_addr_dict["scheduler_cfg[scheduler].optimizer.param_groups"]}
##########################################
"""
logger.debug(log_str)
# TODO(User): input your eval_metric
eval_metric = None
trainer = DSTrainer(
device_id=local_rank,
criterion=criterion,
eval_metric=eval_metric,
precision=hparams.model_dtype,
cmd_logger=logger,
web_logger=web_logger,
max_epochs=hparams.max_epochs,
grad_accum_steps=hparams.accumulate_grad_batches,
chk_addr_dict=chk_addr_dict,
checkpoint_dir=hparams.output_dir,
log_every_n=hparams.log_every_n,
max_norm=hparams.max_norm,
metric_on_cpu=hparams.metric_on_cpu,
)
trainer.fit(
model=model,
optimizer=optimizer,
scheduler_cfg=lr_scheduler,
train_loader=train_dataloader,
val_loader=eval_dataloader,
ckpt_path=hparams.output_dir,
trainable_loss=trainable_loss,
)
if local_rank == 0:
web_logger.finish(exit_code=0)
if __name__ == "__main__":
assert torch.distributed.is_available(), "DDP is only multi gpu!! check plz!"
assert torch.cuda.is_available(), "CPU training is not allowed."
parser = ArgumentParser()
parser.add_arguments(TrainingArguments, dest="training_args")
parser = deepspeed.add_config_arguments(parser)
args = parser.parse_args()
args = dataclass_to_namespace(args, "training_args")
main(args)