-
Notifications
You must be signed in to change notification settings - Fork 226
/
Copy pathbase_feature.py
441 lines (429 loc) · 36.1 KB
/
base_feature.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
# coding=utf-8
# @author:bryan
from multiprocessing import Pool
from multiprocessing import cpu_count
import math
import pandas as pd
import datetime
import numpy as np
import gc
processor=cpu_count()-2
"""
concate feature
"""
def concate_feature(data):
features=[('user_occupation_id','shop_star_level'),('item_collected_level','item_pv_level'),('user_star_level','hour48'),('item_price_level','hour48'),('item_sales_level','context_page_id')]
con_fea=[]
def concate_feature(data, f1, f2, name):
data[name] = data.apply(lambda x: str(x[f1]) + ';' + str(x[f2]), axis=1)
return data
for i in features:
data=concate_feature(data, i[0], i[1], '_con_'.join(i))
con_fea.append('_con_'.join(i))
return data,con_fea
"""
query特征,之前,之后有几次相同的query
相同query,相同item,之前之后有多少个
相同query,相同shop,之前之后个数
相同query,相同brand,之前之后个数
相同query,相同city,之前之后个数
cate,page
这个query之前之后是否搜过其他商品
当前query之前之后点击了几个query
"""
def run_query_feature(i):
data=pd.read_csv('../data/user_data/query_'+str(i)+'.csv')
features=[]
for index,row in data.iterrows():
feature={}
feature['instance_id']=row['instance_id']
if index%100==0:
print(index)
col=['user_id','predict_category_property','context_timestamp','day','query1','query','item_id','shop_id','item_brand_id','item_city_id','context_page_id','item_category_list']
tmp=data[data['user_id']==row['user_id']][['instance_id']+col]
before_query_cnt=len(tmp[(tmp['predict_category_property']==row['predict_category_property'])& (tmp['context_timestamp']<row['context_timestamp'])&(tmp['day']<=row['day'])])
before_query_1_cnt = len(tmp[(tmp['query1'] == row['query1']) & (tmp['context_timestamp'] < row['context_timestamp']) & (tmp['day'] <= row['day'])])
before_query_all_cnt = len(tmp[(tmp['query'] == row['query']) & (tmp['context_timestamp'] < row['context_timestamp']) & (tmp['day'] <= row['day'])])
after_query_cnt = len(tmp[(tmp['predict_category_property'] == row['predict_category_property']) & (tmp['context_timestamp'] > row['context_timestamp'])&(tmp['day']<=row['day'])])
after_query_1_cnt = len(tmp[(tmp['query1'] == row['query1']) & (tmp['context_timestamp'] > row['context_timestamp']) & (tmp['day'] <= row['day'])])
after_query_all_cnt = len(tmp[(tmp['query'] == row['query']) & (tmp['context_timestamp'] > row['context_timestamp']) & (tmp['day'] <= row['day'])])
before_query_item_cnt=len(tmp[(tmp['item_id']==row['item_id'])&(tmp['predict_category_property']==row['predict_category_property'])& (tmp['context_timestamp']<row['context_timestamp'])&(tmp['day']<=row['day'])])
before_query_1_item_cnt = len(tmp[(tmp['item_id'] == row['item_id']) & (tmp['query1'] == row['query1']) & (tmp['context_timestamp'] < row['context_timestamp']) & (tmp['day'] <= row['day'])])
before_query_all_item_cnt = len(tmp[(tmp['item_id'] == row['item_id']) & (tmp['query'] == row['query']) & (tmp['context_timestamp'] < row['context_timestamp']) & (tmp['day'] <= row['day'])])
after_query_item_cnt = len(tmp[(tmp['item_id'] == row['item_id']) & ( tmp['predict_category_property'] == row['predict_category_property']) & (tmp['context_timestamp'] > row['context_timestamp'])&(tmp['day']<=row['day'])])
after_query_1_item_cnt = len(tmp[(tmp['item_id'] == row['item_id']) & (tmp['query1'] == row['query1']) & (tmp['context_timestamp'] > row['context_timestamp']) & (tmp['day'] <= row['day'])])
after_query_all_item_cnt = len(tmp[(tmp['item_id'] == row['item_id']) & (tmp['query'] == row['query']) & (tmp['context_timestamp'] > row['context_timestamp']) & (tmp['day'] <= row['day'])])
before_query_shop_cnt=len(tmp[(tmp['shop_id']==row['shop_id'])&(tmp['predict_category_property']==row['predict_category_property'])& (tmp['context_timestamp']<row['context_timestamp'])&(tmp['day']<=row['day'])])
before_query_1_shop_cnt = len(tmp[(tmp['shop_id'] == row['shop_id']) & (tmp['query1'] == row['query1']) & (tmp['context_timestamp'] < row['context_timestamp']) & (tmp['day'] <= row['day'])])
before_query_all_shop_cnt = len(tmp[(tmp['shop_id'] == row['shop_id']) & (tmp['query'] == row['query']) & (tmp['context_timestamp'] < row['context_timestamp']) & (tmp['day'] <= row['day'])])
after_query_shop_cnt=len(tmp[(tmp['shop_id'] == row['shop_id']) & ( tmp['predict_category_property'] == row['predict_category_property']) & (tmp['context_timestamp'] > row['context_timestamp'])&(tmp['day']<=row['day'])])
after_query_all_shop_cnt = len(tmp[(tmp['shop_id'] == row['shop_id']) & (tmp['query'] == row['query']) & (tmp['context_timestamp'] > row['context_timestamp']) & (tmp['day'] <= row['day'])])
after_query_1_shop_cnt = len(tmp[(tmp['shop_id'] == row['shop_id']) & (tmp['query1'] == row['query1']) & (tmp['context_timestamp'] > row['context_timestamp']) & (tmp['day'] <= row['day'])])
before_query_brand_cnt=len(tmp[(tmp['item_brand_id']==row['item_brand_id'])&(tmp['predict_category_property']==row['predict_category_property'])& (tmp['context_timestamp']<row['context_timestamp'])&(tmp['day']<=row['day'])])
before_query_all_brand_cnt = len(tmp[(tmp['item_brand_id'] == row['item_brand_id']) & (tmp['query'] == row['query']) & (tmp['context_timestamp'] < row['context_timestamp']) & (tmp['day'] <= row['day'])])
before_query_1_brand_cnt = len(tmp[(tmp['item_brand_id'] == row['item_brand_id']) & (tmp['query1'] == row['query1']) & (tmp['context_timestamp'] < row['context_timestamp']) & (tmp['day'] <= row['day'])])
after_query_brand_cnt=len(tmp[(tmp['item_brand_id'] == row['item_brand_id']) & ( tmp['predict_category_property'] == row['predict_category_property']) & (tmp['context_timestamp'] > row['context_timestamp'])&(tmp['day']<=row['day'])])
after_query_all_brand_cnt = len(tmp[(tmp['item_brand_id'] == row['item_brand_id']) & (tmp['query'] == row['query']) & (tmp['context_timestamp'] > row['context_timestamp']) & (tmp['day'] <= row['day'])])
after_query_1_brand_cnt = len(tmp[(tmp['item_brand_id'] == row['item_brand_id']) & (tmp['query1'] == row['query1']) & (tmp['context_timestamp'] > row['context_timestamp']) & (tmp['day'] <= row['day'])])
before_query_city_cnt = len(tmp[(tmp['item_city_id'] == row['item_city_id']) & (tmp['predict_category_property'] == row['predict_category_property']) & (tmp['context_timestamp'] < row['context_timestamp'])&(tmp['day']<=row['day'])])
before_query_all_city_cnt = len(tmp[(tmp['item_city_id'] == row['item_city_id']) & (tmp['query'] == row['query']) & (tmp['context_timestamp'] < row['context_timestamp']) & (tmp['day'] <= row['day'])])
before_query_1_city_cnt = len(tmp[(tmp['item_city_id'] == row['item_city_id']) & (tmp['query1'] == row['query1']) & (tmp['context_timestamp'] < row['context_timestamp']) & (tmp['day'] <= row['day'])])
after_query_city_cnt = len(tmp[(tmp['item_city_id'] == row['item_city_id']) & (tmp['predict_category_property'] == row['predict_category_property']) & (tmp['context_timestamp'] > row['context_timestamp'])&(tmp['day']<=row['day'])])
after_query_all_city_cnt = len(tmp[(tmp['item_city_id'] == row['item_city_id']) & (tmp['query'] == row['query']) & (tmp['context_timestamp'] > row['context_timestamp']) & (tmp['day'] <= row['day'])])
after_query_1_city_cnt = len(tmp[(tmp['item_city_id'] == row['item_city_id']) & (tmp['query1'] == row['query1']) & (tmp['context_timestamp'] > row['context_timestamp']) & (tmp['day'] <= row['day'])])
before_query_page_cnt = len(tmp[(tmp['context_page_id'] == row['context_page_id']) & (tmp['predict_category_property'] == row['predict_category_property']) & (tmp['context_timestamp'] < row['context_timestamp']) & (tmp['day'] <= row['day'])])
before_query_1_page_cnt = len(tmp[(tmp['context_page_id'] == row['context_page_id']) & (tmp['query1'] == row['query1']) & (tmp['context_timestamp'] < row['context_timestamp']) & (tmp['day'] <= row['day'])])
before_query_all_page_cnt = len(tmp[(tmp['context_page_id'] == row['context_page_id']) & (tmp['query'] == row['query']) & (tmp['context_timestamp'] < row['context_timestamp']) & (tmp['day'] <= row['day'])])
after_query_page_cnt = len(tmp[(tmp['context_page_id'] == row['context_page_id']) & (tmp['predict_category_property'] == row['predict_category_property']) & (tmp['context_timestamp'] > row['context_timestamp']) & (tmp['day'] <= row['day'])])
after_query_1_page_cnt = len(tmp[(tmp['context_page_id'] == row['context_page_id']) & (tmp['query1'] == row['query1']) & (tmp['context_timestamp'] > row['context_timestamp']) & (tmp['day'] <= row['day'])])
after_query_all_page_cnt = len(tmp[(tmp['context_page_id'] == row['context_page_id']) & (tmp['query'] == row['query']) & (tmp['context_timestamp'] > row['context_timestamp']) & (tmp['day'] <= row['day'])])
before_query_cate_cnt = len(tmp[(tmp['item_category_list'] == row['item_category_list']) & (tmp['predict_category_property'] == row['predict_category_property']) & (tmp['context_timestamp'] < row['context_timestamp']) & (tmp['day'] <= row['day'])])
before_query_1_cate_cnt = len(tmp[(tmp['item_category_list'] == row['item_category_list']) & (tmp['query1'] == row['query1']) & (tmp['context_timestamp'] < row['context_timestamp']) & (tmp['day'] <= row['day'])])
before_query_all_cate_cnt = len(tmp[(tmp['item_category_list'] == row['item_category_list']) & (tmp['query'] == row['query']) & (tmp['context_timestamp'] < row['context_timestamp']) & (tmp['day'] <= row['day'])])
after_query_cate_cnt = len(tmp[(tmp['item_category_list'] == row['item_category_list']) & (tmp['predict_category_property'] == row['predict_category_property']) & (tmp['context_timestamp'] > row['context_timestamp']) & (tmp['day'] <= row['day'])])
after_query_1_cate_cnt = len(tmp[(tmp['item_category_list'] == row['item_category_list']) & (tmp['query1'] == row['query1']) & (tmp['context_timestamp'] > row['context_timestamp']) & (tmp['day'] <= row['day'])])
after_query_all_cate_cnt = len(tmp[(tmp['item_category_list'] == row['item_category_list']) & (tmp['query'] == row['query']) & (tmp['context_timestamp'] > row['context_timestamp']) & (tmp['day'] <= row['day'])])
before_diff_query_cnt= len(set(tmp[(tmp['context_timestamp']<row['context_timestamp'])&(tmp['predict_category_property']!=row['predict_category_property'])]))
before_diff_query_all_cnt = len(set(tmp[(tmp['context_timestamp'] < row['context_timestamp']) & (tmp['query'] != row['query'])]))
before_diff_query_1_cnt = len(set(tmp[(tmp['context_timestamp'] < row['context_timestamp']) & (tmp['query1'] != row['query1'])]))
after_diff_query_cnt = len(set(tmp[(tmp['context_timestamp'] > row['context_timestamp']) & (tmp['predict_category_property'] != row['predict_category_property'])]))
after_diff_query_all_cnt = len(set(tmp[(tmp['context_timestamp'] > row['context_timestamp']) & (tmp['query'] != row['query'])]))
after_diff_query_1_cnt = len(set(tmp[(tmp['context_timestamp'] > row['context_timestamp']) & (tmp['query1'] != row['query1'])]))
query_min_time=np.min(tmp[(tmp['predict_category_property'] == row['predict_category_property'])]['context_timestamp'])
query_all_min_time = np.min(tmp[(tmp['query'] == row['query'])]['context_timestamp'])
query_1_min_time = np.min(tmp[(tmp['query1'] == row['query1'])]['context_timestamp'])
before_query_items= len(set(tmp[(tmp['context_timestamp'] <query_min_time)]['item_id']))
before_query_all_items = len(set(tmp[(tmp['context_timestamp'] < query_all_min_time)]['item_id']))
before_query_1_items = len(set(tmp[(tmp['context_timestamp'] < query_1_min_time)]['item_id']))
before_query_shops = len(set(tmp[(tmp['context_timestamp'] < query_min_time)]['shop_id']))
before_query_all_shops = len(set(tmp[(tmp['context_timestamp'] < query_all_min_time)]['shop_id']))
before_query_1_shops = len(set(tmp[(tmp['context_timestamp'] < query_1_min_time)]['shop_id']))
query_max_time = np.max(tmp[(tmp['predict_category_property'] == row['predict_category_property'])]['context_timestamp'])
query_all_max_time = np.max(tmp[(tmp['query'] == row['query'])]['context_timestamp'])
query_1_max_time = np.max(tmp[(tmp['query1'] == row['query1'])]['context_timestamp'])
after_query_items = len(set(tmp[(tmp['context_timestamp'] > query_max_time)]['item_id']))
after_query_all_items = len(set(tmp[(tmp['context_timestamp'] > query_all_max_time)]['item_id']))
after_query_1_items = len(set(tmp[(tmp['context_timestamp'] > query_1_max_time)]['item_id']))
after_query_shops = len(set(tmp[(tmp['context_timestamp'] > query_max_time)]['shop_id']))
after_query_all_shops = len(set(tmp[(tmp['context_timestamp'] > query_all_max_time)]['shop_id']))
after_query_1_shops = len(set(tmp[(tmp['context_timestamp'] > query_1_max_time)]['shop_id']))
feature['before_query_cnt'] = before_query_cnt
feature['after_query_cnt'] = after_query_cnt
feature['before_query_item_cnt'] = before_query_item_cnt
feature['after_query_item_cnt'] = after_query_item_cnt
feature['before_query_shop_cnt'] = before_query_shop_cnt
feature['after_query_shop_cnt'] = after_query_shop_cnt
feature['before_query_brand_cnt'] = before_query_brand_cnt
feature['after_query_brand_cnt'] = after_query_brand_cnt
feature['before_query_city_cnt'] = before_query_city_cnt
feature['after_query_city_cnt'] = after_query_city_cnt
feature['before_diff_query_cnt'] = before_diff_query_cnt
feature['after_diff_query_cnt'] = after_diff_query_cnt
feature['before_query_items'] = before_query_items
feature['before_query_shops'] = before_query_shops
feature['after_query_items'] = after_query_items
feature['after_query_shops'] = after_query_shops
feature['before_query_1_cnt'] = before_query_1_cnt
feature['before_query_all_cnt'] = before_query_all_cnt
feature['after_query_1_cnt'] = after_query_1_cnt
feature['after_query_all_cnt'] = after_query_all_cnt
feature['before_query_1_item_cnt'] = before_query_1_item_cnt
feature['before_query_all_item_cnt'] = before_query_all_item_cnt
feature['after_query_1_item_cnt'] = after_query_1_item_cnt
feature['after_query_all_item_cnt'] = after_query_all_item_cnt
feature['before_query_1_shop_cnt'] = before_query_1_shop_cnt
feature['before_query_all_shop_cnt'] = before_query_all_shop_cnt
feature['after_query_all_shop_cnt'] = after_query_all_shop_cnt
feature['after_query_1_shop_cnt'] = after_query_1_shop_cnt
feature['before_query_all_brand_cnt'] = before_query_all_brand_cnt
feature['before_query_1_brand_cnt'] = before_query_1_brand_cnt
feature['after_query_all_brand_cnt'] = after_query_all_brand_cnt
feature['after_query_1_brand_cnt'] = after_query_1_brand_cnt
feature['before_query_all_city_cnt'] = before_query_all_city_cnt
feature['before_query_1_city_cnt'] = before_query_1_city_cnt
feature['after_query_all_city_cnt'] = after_query_all_city_cnt
feature['after_query_1_city_cnt'] = after_query_1_city_cnt
feature['before_diff_query_all_cnt'] = before_diff_query_all_cnt
feature['before_diff_query_1_cnt'] = before_diff_query_1_cnt
feature['after_diff_query_all_cnt'] = after_diff_query_all_cnt
feature['after_diff_query_1_cnt'] = after_diff_query_1_cnt
feature['before_query_all_items'] = before_query_all_items
feature['before_query_1_items'] = before_query_1_items
feature['before_query_all_shops'] = before_query_all_shops
feature['before_query_1_shops'] = before_query_1_shops
feature['after_query_all_items'] = after_query_all_items
feature['after_query_1_items'] = after_query_1_items
feature['after_query_all_shops'] = after_query_all_shops
feature['after_query_1_shops'] = after_query_1_shops
feature['before_query_page_cnt'] = before_query_page_cnt
feature['before_query_1_page_cnt'] = before_query_1_page_cnt
feature['before_query_all_page_cnt'] = before_query_all_page_cnt
feature['after_query_page_cnt'] = after_query_page_cnt
feature['after_query_1_page_cnt'] = after_query_1_page_cnt
feature['after_query_all_page_cnt'] = after_query_all_page_cnt
feature['before_query_cate_cnt'] = before_query_cate_cnt
feature['before_query_1_cate_cnt'] = before_query_1_cate_cnt
feature['before_query_all_cate_cnt'] = before_query_all_cate_cnt
feature['after_query_cate_cnt'] = after_query_cate_cnt
feature['after_query_1_cate_cnt'] = after_query_1_cate_cnt
feature['after_query_all_cate_cnt'] = after_query_all_cate_cnt
features.append(feature)
features=pd.DataFrame(features)
print(str(i) + ' processor finished !')
return features
def query_data_prepare():
data=pd.read_csv('../data/origion_concat.csv')
data=data[data.day>=6]
data = data.sort_values(by=['user_id', 'context_timestamp']).reset_index(drop=True)
users = pd.DataFrame(list(set(data['user_id'].values)), columns=['user_id'])
l_data = len(users)
size = math.ceil(l_data / processor)
for i in range(processor):
start = size * i
end = (i + 1) * size if (i + 1) * size < l_data else l_data
user = users[start:end]
t_data = pd.merge(data, user, on='user_id').reset_index(drop=True)
t_data.to_csv('../data/user_data/query_'+str(i)+'.csv',index=False)
print(len(t_data))
def query_feature():
res = []
p = Pool(processor)
for i in range(processor):
res.append(p.apply_async(run_query_feature, args=( i,)))
print(str(i) + ' processor started !')
p.close()
p.join()
data=pd.concat([i.get() for i in res])
data.to_csv('../data/query_all.csv',index=False)
"""
最大最小点击间隔,平均点击间隔,只有一条数据算-1,上一个下一个间隔
距离最前最后一次点击分钟数
之前之后点击过多少query,item,shop,brand,city,query次数占比,item次数占比,shop,brand,city次数占比
搜索这个商品,店铺,品牌,城市,用了几个query
:param data:
:return:
"""
def sec_diff(a,b):
if (a is np.nan) | (b is np.nan):
return -1
return (datetime.datetime.strptime(str(b), "%Y-%m-%d %H:%M:%S")-datetime.datetime.strptime(str(a), "%Y-%m-%d %H:%M:%S")).seconds
def run_leak_feature( i):
col = ['user_id', 'predict_category_property', 'context_timestamp', 'day', 'query1', 'query', 'item_id', 'shop_id',
'item_brand_id', 'item_city_id', 'item_category_list']
data = pd.read_csv('../data/user_data/query_' + str(i) + '.csv')[['instance_id']+col]
features=[]
for index, row in data.iterrows():
feature={}
feature['instance_id']=row['instance_id']
if index%1000==0:
print(index)
tmp = data[(data['user_id'] == row['user_id'])&(data['day']==row['day'])]
tmp=tmp.sort_values(by='context_timestamp').reset_index(drop=True)
diffs=[]
if len(tmp)==1:
diffs.append(-1)
else:
for ind in range(len(tmp)-1):
diffs.append(sec_diff(tmp.loc[ind+1,'context_timestamp'],tmp.loc[ind,'context_timestamp']))
max_diff=np.max(diffs)
min_diff=np.min(diffs)
avg_diff=np.mean(diffs)
mid_diff=np.median(diffs)
diff_first_click=sec_diff(row['context_timestamp'],tmp.loc[0,'context_timestamp'])
diff_last_click = sec_diff(row['context_timestamp'], tmp.loc[len(tmp)-1, 'context_timestamp'])
previous_diff=sec_diff(row['context_timestamp'], np.max(tmp[(tmp['context_timestamp'] < row['context_timestamp'])]['context_timestamp']))
next_diff=sec_diff( np.min(tmp[(tmp['context_timestamp'] > row['context_timestamp'])]['context_timestamp']),row['context_timestamp'])
query_cnt=len(set(tmp['predict_category_property']))
query_1_cnt = len(set(tmp['query1']))
query_all_cnt = len(set(tmp['query']))
item_cnt=len(set(tmp['item_id']))
shop_cnt=len(set(tmp['shop_id']))
brand_cnt=len(set(tmp['item_brand_id']))
city_cnt=len(set(tmp['item_city_id']))
before_query_rate=len(set(tmp[(tmp['context_timestamp']<=row['context_timestamp'])&(tmp['predict_category_property'] == row['predict_category_property'])]['predict_category_property']))/query_cnt
after_query_rate=1-before_query_rate
before_query_all_rate = len(set(tmp[(tmp['context_timestamp'] <= row['context_timestamp']) & (tmp['query'] == row['query'])]['query'])) / query_all_cnt
after_query_all_rate = 1 - before_query_all_rate
before_query_1_rate = len(set(tmp[(tmp['context_timestamp'] <= row['context_timestamp']) & (tmp['query1'] == row['query1'])]['query1'])) / query_1_cnt
after_query_1_rate = 1 - before_query_1_rate
before_item_rate=len(set(tmp[(tmp['context_timestamp']<=row['context_timestamp'])&(tmp['item_id'] == row['item_id'])]['item_id']))/item_cnt
after_item_rate=1-before_item_rate
before_shop_rate=len(set(tmp[(tmp['context_timestamp']<=row['context_timestamp'])&(tmp['shop_id'] == row['shop_id'])]['shop_id']))/shop_cnt
after_shop_rate=1-before_shop_rate
before_brand_rate=len(set(tmp[(tmp['context_timestamp']<=row['context_timestamp'])&(tmp['item_brand_id'] == row['item_brand_id'])]['item_brand_id']))/brand_cnt
after_brand_rate=1-before_brand_rate
before_city_rate=len(set(tmp[(tmp['context_timestamp']<=row['context_timestamp'])&(tmp['item_city_id'] == row['item_city_id'])]['item_city_id']))/city_cnt
after_city_rate=1-before_city_rate
before_item_query_cnt=len(set(tmp[(tmp['context_timestamp'] <= row['context_timestamp']) & (tmp['item_id'] == row['item_id'])]['predict_category_property']))
before_item_query_all_cnt = len(set(tmp[(tmp['context_timestamp'] <= row['context_timestamp']) & (tmp['item_id'] == row['item_id'])]['query']))
before_item_query_1_cnt = len(set(tmp[(tmp['context_timestamp'] <= row['context_timestamp']) & (tmp['item_id'] == row['item_id'])]['query1']))
after_item_query_cnt=len(set(tmp[(tmp['context_timestamp'] > row['context_timestamp']) & (tmp['item_id'] == row['item_id'])]['predict_category_property']))
after_item_query_all_cnt = len(set(tmp[(tmp['context_timestamp'] > row['context_timestamp']) & (tmp['item_id'] == row['item_id'])]['query']))
after_item_query_1_cnt = len(set(tmp[(tmp['context_timestamp'] > row['context_timestamp']) & (tmp['item_id'] == row['item_id'])]['query1']))
before_shop_query_cnt=len(set(tmp[(tmp['context_timestamp'] <= row['context_timestamp']) & (tmp['shop_id'] == row['shop_id'])]['predict_category_property']))
before_shop_query_all_cnt = len(set(tmp[(tmp['context_timestamp'] <= row['context_timestamp']) & (tmp['shop_id'] == row['shop_id'])]['query']))
before_shop_query_1_cnt = len(set(tmp[(tmp['context_timestamp'] <= row['context_timestamp']) & (tmp['shop_id'] == row['shop_id'])]['query1']))
after_shop_query_cnt=len(set(tmp[(tmp['context_timestamp'] > row['context_timestamp']) & (tmp['shop_id'] == row['shop_id'])]['predict_category_property']))
after_shop_query_all_cnt = len(set(tmp[(tmp['context_timestamp'] > row['context_timestamp']) & (tmp['shop_id'] == row['shop_id'])]['query']))
after_shop_query_1_cnt = len(set(tmp[(tmp['context_timestamp'] > row['context_timestamp']) & (tmp['shop_id'] == row['shop_id'])]['query1']))
before_brand_query_cnt=len(set(tmp[(tmp['context_timestamp'] <= row['context_timestamp']) & (tmp['item_brand_id'] == row['item_brand_id'])]['predict_category_property']))
before_brand_query_all_cnt = len(set(tmp[(tmp['context_timestamp'] <= row['context_timestamp']) & (tmp['item_brand_id'] == row['item_brand_id'])]['query']))
before_brand_query_1_cnt = len(set(tmp[(tmp['context_timestamp'] <= row['context_timestamp']) & (tmp['item_brand_id'] == row['item_brand_id'])]['query1']))
after_brand_query_cnt = len(set(tmp[(tmp['context_timestamp'] > row['context_timestamp']) & (tmp['item_brand_id'] == row['item_brand_id'])]['predict_category_property']))
after_brand_query_all_cnt = len(set(tmp[(tmp['context_timestamp'] > row['context_timestamp']) & (tmp['item_brand_id'] == row['item_brand_id'])]['query']))
after_brand_query_1_cnt = len(set(tmp[(tmp['context_timestamp'] > row['context_timestamp']) & (tmp['item_brand_id'] == row['item_brand_id'])]['query1']))
before_city_query_cnt = len(set(tmp[(tmp['context_timestamp'] <= row['context_timestamp']) & (tmp['item_city_id'] == row['item_city_id'])]['predict_category_property']))
before_city_query_all_cnt = len(set(tmp[(tmp['context_timestamp'] <= row['context_timestamp']) & (tmp['item_city_id'] == row['item_city_id'])]['query']))
before_city_query_1_cnt = len(set(tmp[(tmp['context_timestamp'] <= row['context_timestamp']) & (tmp['item_city_id'] == row['item_city_id'])]['query1']))
after_city_query_cnt = len(set(tmp[(tmp['context_timestamp'] > row['context_timestamp']) & (tmp['item_city_id'] == row['item_city_id'])]['predict_category_property']))
after_city_query_all_cnt = len(set(tmp[(tmp['context_timestamp'] > row['context_timestamp']) & (tmp['item_city_id'] == row['item_city_id'])]['query']))
after_city_query_1_cnt = len(set(tmp[(tmp['context_timestamp'] > row['context_timestamp']) & (tmp['item_city_id'] == row['item_city_id'])]['query1']))
before_cate_query_cnt = len(set(tmp[(tmp['context_timestamp'] <= row['context_timestamp']) & (tmp['item_category_list'] == row['item_category_list'])]['predict_category_property']))
before_cate_query_all_cnt = len(set(tmp[(tmp['context_timestamp'] <= row['context_timestamp']) & (tmp['item_category_list'] == row['item_category_list'])]['query']))
before_cate_query_1_cnt = len(set(tmp[(tmp['context_timestamp'] <= row['context_timestamp']) & (tmp['item_category_list'] == row['item_category_list'])]['query1']))
after_cate_query_cnt = len(set(tmp[(tmp['context_timestamp'] > row['context_timestamp']) & (tmp['item_category_list'] == row['item_category_list'])]['predict_category_property']))
after_cate_query_all_cnt = len(set(tmp[(tmp['context_timestamp'] > row['context_timestamp']) & (tmp['item_category_list'] == row['item_category_list'])]['query']))
after_cate_query_1_cnt = len(set(tmp[(tmp['context_timestamp'] > row['context_timestamp']) & (tmp['item_category_list'] == row['item_category_list'])]['query1']))
feature['max_diff'] = max_diff
feature['min_diff'] = min_diff
feature['avg_diff'] = avg_diff
feature['mid_diff'] = mid_diff
feature['diff_first_click'] = diff_first_click
feature['diff_last_click'] = diff_last_click
feature['previous_diff'] = previous_diff
feature['next_diff'] = next_diff
feature['before_query_rate'] = before_query_rate
feature['after_query_rate'] = after_query_rate
feature['after_query_all_rate'] = after_query_all_rate
feature['before_query_all_rate'] = before_query_all_rate
feature['after_query_1_rate'] = after_query_1_rate
feature['before_query_1_rate'] = before_query_1_rate
feature['before_item_rate'] = before_item_rate
feature['after_item_rate'] = after_item_rate
feature['before_shop_rate'] = before_shop_rate
feature['after_shop_rate'] = after_shop_rate
feature['before_brand_rate'] = before_brand_rate
feature['after_brand_rate'] = after_brand_rate
feature['before_city_rate'] = before_city_rate
feature['after_city_rate'] = after_city_rate
feature['before_item_query_cnt'] = before_item_query_cnt
feature['after_item_query_cnt'] = after_item_query_cnt
feature['before_shop_query_cnt'] = before_shop_query_cnt
feature['after_shop_query_cnt'] = after_shop_query_cnt
feature['before_brand_query_cnt'] = before_brand_query_cnt
feature['after_brand_query_cnt'] = after_brand_query_cnt
feature['before_city_query_cnt'] = before_city_query_cnt
feature['after_city_query_cnt'] = after_city_query_cnt
feature['before_item_query_all_cnt'] = before_item_query_all_cnt
feature['before_item_query_1_cnt'] = before_item_query_1_cnt
feature['after_item_query_all_cnt'] = after_item_query_all_cnt
feature['after_item_query_1_cnt'] = after_item_query_1_cnt
feature['before_shop_query_all_cnt'] = before_shop_query_all_cnt
feature['before_shop_query_1_cnt'] = before_shop_query_1_cnt
feature['after_shop_query_all_cnt'] = after_shop_query_all_cnt
feature['after_shop_query_1_cnt'] = after_shop_query_1_cnt
feature['before_brand_query_all_cnt'] = before_brand_query_all_cnt
feature['before_brand_query_1_cnt'] = before_brand_query_1_cnt
feature['after_brand_query_all_cnt'] = after_brand_query_all_cnt
feature['after_brand_query_1_cnt'] = after_brand_query_1_cnt
feature['before_city_query_all_cnt'] = before_city_query_all_cnt
feature['before_city_query_1_cnt'] = before_city_query_1_cnt
feature['after_city_query_all_cnt'] = after_city_query_all_cnt
feature['after_city_query_1_cnt'] = after_city_query_1_cnt
feature['before_cate_query_cnt'] = before_cate_query_cnt
feature['before_cate_query_all_cnt'] = before_cate_query_all_cnt
feature['before_cate_query_1_cnt'] = before_cate_query_1_cnt
feature['after_cate_query_cnt'] = after_cate_query_cnt
feature['after_cate_query_all_cnt'] = after_cate_query_all_cnt
feature['after_cate_query_1_cnt'] = after_cate_query_1_cnt
features.append(feature)
print(str(i) + ' processor finished !')
return pd.DataFrame(features)
def leak_feature():
res = []
p = Pool(processor)
for i in range(processor):
res.append(p.apply_async(run_leak_feature, args=( i,)))
print(str(i) + ' processor started !')
p.close()
p.join()
data = pd.concat([i.get() for i in res])
data.to_csv('../data/leak_all.csv',index=False)
# return data
def run_compare_feature(i):
data = pd.read_csv('../data/user_data/query_' + str(i) + '.csv')
features=[]
for index,row in data.iterrows():
feature={}
feature['instance_id']=row['instance_id']
if index%1000==0:
print(index)
tmp = data[(data['user_id'] == row['user_id'])&(data['day']==row['day'])]
# tmp=tmp.sort_values(by='context_timestamp').reset_index(drop=True)
before_low_price_cnt=len(set(tmp[(tmp['context_timestamp']<row['context_timestamp']) &(tmp['item_price_level']<row['item_price_level'])]['item_id']))
after_low_price_cnt = len(set(tmp[(tmp['context_timestamp'] > row['context_timestamp']) & (tmp['item_price_level'] < row['item_price_level'])]['item_id']))
before_high_sale_cnt=len(set(tmp[(tmp['context_timestamp']<row['context_timestamp']) &(tmp['item_sales_level']>row['item_sales_level'])]['item_id']))
after_high_sale_cnt = len(set(tmp[(tmp['context_timestamp'] > row['context_timestamp']) & (tmp['item_sales_level'] > row['item_sales_level'])]['item_id']))
before_high_review_num_cnt = len(set(tmp[(tmp['context_timestamp'] < row['context_timestamp']) & (tmp['shop_review_num_level'] > row['shop_review_num_level'])]['shop_id']))
after_high_review_num_cnt = len(set(tmp[(tmp['context_timestamp'] > row['context_timestamp']) & (tmp['shop_review_num_level'] > row['shop_review_num_level'])]['shop_id']))
before_high_review_positive_cnt=len(set(tmp[(tmp['context_timestamp'] < row['context_timestamp']) & (tmp['shop_review_positive_rate'] > row['shop_review_positive_rate'])]['shop_id']))
after_high_review_positive_cnt = len(set(tmp[(tmp['context_timestamp'] > row['context_timestamp']) & (tmp['shop_review_positive_rate'] > row['shop_review_positive_rate'])]['shop_id']))
before_high_star_level_cnt=len(set(tmp[(tmp['context_timestamp'] < row['context_timestamp']) & (tmp['shop_star_level'] > row['shop_star_level'])]['shop_id']))
after_high_star_level_cnt = len(set(tmp[(tmp['context_timestamp'] > row['context_timestamp']) & (tmp['shop_star_level'] > row['shop_star_level'])]['shop_id']))
before_high_score_service_cnt=len(set(tmp[(tmp['context_timestamp'] < row['context_timestamp']) & (tmp['shop_score_service'] > row['shop_score_service'])]['shop_id']))
after_high_score_service_cnt = len(set(tmp[(tmp['context_timestamp'] > row['context_timestamp']) & (tmp['shop_score_service'] > row['shop_score_service'])]['shop_id']))
before_high_score_delivery_cnt=len(set(tmp[(tmp['context_timestamp'] < row['context_timestamp']) & (tmp['shop_score_delivery'] > row['shop_score_delivery'])]['shop_id']))
after_high_score_delivery_cnt = len(set(tmp[(tmp['context_timestamp'] > row['context_timestamp']) & (tmp['shop_score_delivery'] > row['shop_score_delivery'])]['shop_id']))
before_high_score_description_cnt=len(set(tmp[(tmp['context_timestamp'] < row['context_timestamp']) & (tmp['shop_score_description'] > row['shop_score_description'])]['shop_id']))
after_high_score_description_cnt = len(set(tmp[(tmp['context_timestamp'] > row['context_timestamp']) & (tmp['shop_score_description'] > row['shop_score_description'])]['shop_id']))
feature['before_low_price_cnt'] = before_low_price_cnt
feature['after_low_price_cnt'] = after_low_price_cnt
feature['before_high_sale_cnt'] = before_high_sale_cnt
feature['after_high_sale_cnt'] = after_high_sale_cnt
feature['before_high_review_num_cnt'] = before_high_review_num_cnt
feature['after_high_review_num_cnt'] = after_high_review_num_cnt
feature['before_high_review_positive_cnt'] = before_high_review_positive_cnt
feature['after_high_review_positive_cnt'] = after_high_review_positive_cnt
feature['before_high_star_level_cnt'] = before_high_star_level_cnt
feature['after_high_star_level_cnt'] = after_high_star_level_cnt
feature['before_high_score_service_cnt'] = before_high_score_service_cnt
feature['after_high_score_service_cnt'] = after_high_score_service_cnt
feature['before_high_score_delivery_cnt'] = before_high_score_delivery_cnt
feature['after_high_score_delivery_cnt'] = after_high_score_delivery_cnt
feature['before_high_score_description_cnt'] = before_high_score_description_cnt
feature['after_high_score_description_cnt'] = after_high_score_description_cnt
features.append(feature)
print(str(i) + ' processor finished !')
return pd.DataFrame(features)
# return data[['instance_id','before_low_price_cnt','after_low_price_cnt','before_high_sale_cnt','after_high_sale_cnt'
# ,'before_high_review_num_cnt','after_high_review_num_cnt','before_high_review_positive_cnt','after_high_review_positive_cnt'
# ,'before_high_star_level_cnt','after_high_star_level_cnt','before_high_score_service_cnt','after_high_score_service_cnt'
# ,'before_high_score_delivery_cnt','after_high_score_delivery_cnt','before_high_score_description_cnt','after_high_score_description_cnt']]
"""
当天的竞争特征
之前之后点击了多少价格更低的商品,销量更高的商品,评价数更多的店铺,
好评率高的店铺,星级高的店铺,服务态度高的店铺,物流好的店铺,描述平分高的店铺
:param data:
:return:
"""
def compare_feature():
# users = pd.DataFrame(list(set(data['user_id'].values)), columns=['user_id'])
res = []
p = Pool(processor)
for i in range(processor):
res.append(p.apply_async(run_compare_feature, args=(i,)))
print(str(i) + ' processor started !')
p.close()
p.join()
data = pd.concat([i.get() for i in res])
data.to_csv('../data/compare_all.csv',index=False)
# return data
if __name__ == '__main__':
query_data_prepare()
gc.collect()
query_feature()
print('query_feature finish')
leak_feature()
print('leak_feature finish')
compare_feature()
print('compare_feature finish')