-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathProcedure.py
152 lines (138 loc) · 5.77 KB
/
Procedure.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import world
import numpy as np
import torch
import utils
import dataloader
from pprint import pprint
from utils import timer
from time import time
from tqdm import tqdm
import model
import multiprocessing
from sklearn.metrics import roc_auc_score
import scipy.sparse as sp
CORES = multiprocessing.cpu_count() // 2
def BPR_train_original(dataset, recommend_model, loss_class, epoch, neg_k=1, w=None):
Recmodel = recommend_model
Recmodel.train()
bpr: utils.BPRLoss = loss_class
with timer(name="Sample"):
S = utils.UniformSample_original(dataset)
users = torch.Tensor(S[:, 0]).long()
posItems = torch.Tensor(S[:, 1]).long()
negItems = torch.Tensor(S[:, 2]).long()
users = users.to(world.device)
posItems = posItems.to(world.device)
negItems = negItems.to(world.device)
users, posItems, negItems = utils.shuffle(users, posItems, negItems)
total_batch = len(users) // world.config['bpr_batch_size'] + 1
aver_loss = 0.
for (batch_i,
(batch_users,
batch_pos,
batch_neg)) in enumerate(utils.minibatch(users,
posItems,
negItems,
batch_size=world.config['bpr_batch_size'])):
cri = bpr.stageOne(batch_users, batch_pos, batch_neg)
aver_loss += cri
if world.tensorboard:
w.add_scalar(f'BPRLoss/BPR', cri, epoch * int(len(users) / world.config['bpr_batch_size']) + batch_i)
print("------------------------Saving finished------------------------")
aver_loss = aver_loss / total_batch
time_info = timer.dict()
timer.zero()
return f"loss{aver_loss:.3f}-{time_info}"
def test_one_batch(X):
sorted_items = X[0].numpy()
groundTrue = X[1]
r = utils.getLabel(groundTrue, sorted_items)
pre, recall, ndcg = [], [], []
for k in world.topks:
ret = utils.RecallPrecision_ATk(groundTrue, r, k)
pre.append(ret['precision'])
recall.append(ret['recall'])
ndcg.append(utils.NDCGatK_r(groundTrue,r,k))
return {'recall':np.array(recall),
'precision':np.array(pre),
'ndcg':np.array(ndcg)}
def Test(dataset, Recmodel, epoch, w=None, multicore=0):
u_batch_size = world.config['test_u_batch_size']
dataset: utils.BasicDataset
testDict: dict = dataset.testDict
Recmodel: model.LightGCN
# eval mode with no dropout
Recmodel = Recmodel.eval()
max_K = max(world.topks)
if multicore == 1:
pool = multiprocessing.Pool(CORES)
results = {'precision': np.zeros(len(world.topks)),
'recall': np.zeros(len(world.topks)),
'ndcg': np.zeros(len(world.topks))}
with torch.no_grad():
users = list(testDict.keys())
try:
assert u_batch_size <= len(users) / 10
except AssertionError:
print(f"test_u_batch_size is too big for this dataset, try a small one {len(users) // 10}")
users_list = []
rating_list = []
groundTrue_list = []
# auc_record = []
# ratings = []
total_batch = len(users) // u_batch_size + 1
for batch_users in utils.minibatch(users, batch_size=u_batch_size):
allPos = dataset.getUserPosItems(batch_users)
groundTrue = [testDict[u] for u in batch_users]
batch_users_gpu = torch.Tensor(batch_users).long()
batch_users_gpu = batch_users_gpu.to(world.device)
rating = Recmodel.getUsersRating(batch_users_gpu)
#rating = rating.cpu()
exclude_index = []
exclude_items = []
for range_i, items in enumerate(allPos):
exclude_index.extend([range_i] * len(items))
exclude_items.extend(items)
rating[exclude_index, exclude_items] = -(1<<10)
_, rating_K = torch.topk(rating, k=max_K)
rating = rating.cpu().numpy()
# aucs = [
# utils.AUC(rating[i],
# dataset,
# test_data) for i, test_data in enumerate(groundTrue)
# ]
# auc_record.extend(aucs)
del rating
users_list.append(batch_users)
rating_list.append(rating_K.cpu())
groundTrue_list.append(groundTrue)
print("total_batch: ", total_batch)
print("len(users_list): ", len(users_list))
assert total_batch == len(users_list)
X = zip(rating_list, groundTrue_list)
if multicore == 1:
pre_results = pool.map(test_one_batch, X)
else:
pre_results = []
for x in X:
pre_results.append(test_one_batch(x))
scale = float(u_batch_size/len(users))
for result in pre_results:
results['recall'] += result['recall']
results['precision'] += result['precision']
results['ndcg'] += result['ndcg']
results['recall'] /= float(len(users))
results['precision'] /= float(len(users))
results['ndcg'] /= float(len(users))
# results['auc'] = np.mean(auc_record)
if world.tensorboard:
w.add_scalars(f'Test/Recall@{world.topks}',
{str(world.topks[i]): results['recall'][i] for i in range(len(world.topks))}, epoch)
w.add_scalars(f'Test/Precision@{world.topks}',
{str(world.topks[i]): results['precision'][i] for i in range(len(world.topks))}, epoch)
w.add_scalars(f'Test/NDCG@{world.topks}',
{str(world.topks[i]): results['ndcg'][i] for i in range(len(world.topks))}, epoch)
if multicore == 1:
pool.close()
print(results)
return results