-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataloader.py
623 lines (542 loc) · 23.3 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
import os
from os.path import join
import sys
import torch
import numpy as np
import pandas as pd
from torch.utils.data import Dataset, DataLoader
from scipy.sparse import csr_matrix
import scipy.sparse as sp
import world
from world import cprint
from time import time
from parse import parse_args
args = parse_args()
class BasicDataset(Dataset):
def __init__(self):
print("init dataset")
@property
def n_users(self):
raise NotImplementedError
@property
def m_items(self):
raise NotImplementedError
@property
def trainDataSize(self):
raise NotImplementedError
@property
def testDict(self):
raise NotImplementedError
@property
def allPos(self):
raise NotImplementedError
def getUserItemFeedback(self, users, items):
raise NotImplementedError
def getUserPosItems(self, users):
raise NotImplementedError
def getUserNegItems(self, users):
"""
not necessary for large dataset
it's stupid to return all neg items in super large dataset
"""
raise NotImplementedError
def getSparseGraph(self):
"""
build a graph in torch.sparse.IntTensor.
Details in NGCF's matrix form
A =
|I, R|
|R^T, I|
"""
raise NotImplementedError
class LastFM(BasicDataset):
"""
Dataset type for pytorch \n
Incldue graph information
LastFM dataset
"""
def __init__(self, path="../data/lastfm"):
# train or test
cprint("loading [last fm]")
self.mode_dict = {'train':0, "test":1}
self.mode = self.mode_dict['train']
# self.n_users = 1892
# self.m_items = 4489
trainData = pd.read_table(join(path, 'data1.txt'), header=None)
# print(trainData.head())
testData = pd.read_table(join(path, 'test1.txt'), header=None)
# print(testData.head())
trustNet = pd.read_table(join(path, 'trustnetwork.txt'), header=None).to_numpy()
# print(trustNet[:5])
trustNet -= 1
trainData-= 1
testData -= 1
self.trustNet = trustNet
self.trainData = trainData
self.testData = testData
self.trainUser = np.array(trainData[:][0])
self.trainUniqueUsers = np.unique(self.trainUser)
self.trainItem = np.array(trainData[:][1])
# self.trainDataSize = len(self.trainUser)
self.testUser = np.array(testData[:][0])
self.testUniqueUsers = np.unique(self.testUser)
self.testItem = np.array(testData[:][1])
self.Graph = None
print(f"LastFm Sparsity : {(len(self.trainUser) + len(self.testUser))/self.n_users/self.m_items}")
# (users,users)
self.socialNet = csr_matrix((np.ones(len(trustNet)), (trustNet[:,0], trustNet[:,1]) ), shape=(self.n_users,self.n_users))
# (users,items), bipartite graph
self.UserItemNet = csr_matrix((np.ones(len(self.trainUser)), (self.trainUser, self.trainItem) ), shape=(self.n_users,self.m_items))
# pre-calculate
self._allPos = self.getUserPosItems(list(range(self.n_users)))
self.allNeg = []
allItems = set(range(self.m_items))
for i in range(self.n_users):
pos = set(self._allPos[i])
neg = allItems - pos
self.allNeg.append(np.array(list(neg)))
self.__testDict = self.__build_test()
@property
def n_users(self):
return 1892
@property
def m_items(self):
return 4489
@property
def trainDataSize(self):
return len(self.trainUser)
@property
def testDict(self):
return self.__testDict
@property
def allPos(self):
return self._allPos
def getSparseGraph(self):
if self.Graph is None:
user_dim = torch.LongTensor(self.trainUser)
item_dim = torch.LongTensor(self.trainItem)
first_sub = torch.stack([user_dim, item_dim + self.n_users])
second_sub = torch.stack([item_dim+self.n_users, user_dim])
index = torch.cat([first_sub, second_sub], dim=1)
data = torch.ones(index.size(-1)).int()
self.Graph = torch.sparse.IntTensor(index, data, torch.Size([self.n_users+self.m_items, self.n_users+self.m_items]))
dense = self.Graph.to_dense()
D = torch.sum(dense, dim=1).float()
D[D==0.] = 1.
D_sqrt = torch.sqrt(D).unsqueeze(dim=0)
dense = dense/D_sqrt
dense = dense/D_sqrt.t()
index = dense.nonzero()
data = dense[dense >= 1e-9]
assert len(index) == len(data)
self.Graph = torch.sparse.FloatTensor(index.t(), data, torch.Size([self.n_users+self.m_items, self.n_users+self.m_items]))
self.Graph = self.Graph.coalesce().to(world.device)
return self.Graph
def __build_test(self):
"""
return:
dict: {user: [items]}
"""
test_data = {}
for i, item in enumerate(self.testItem):
user = self.testUser[i]
if test_data.get(user):
test_data[user].append(item)
else:
test_data[user] = [item]
return test_data
def getUserItemFeedback(self, users, items):
"""
users:
shape [-1]
items:
shape [-1]
return:
feedback [-1]
"""
# print(self.UserItemNet[users, items])
return np.array(self.UserItemNet[users, items]).astype('uint8').reshape((-1, ))
def getUserPosItems(self, users):
posItems = []
for user in users:
posItems.append(self.UserItemNet[user].nonzero()[1])
return posItems
def getUserNegItems(self, users):
negItems = []
for user in users:
negItems.append(self.allNeg[user])
return negItems
def __getitem__(self, index):
user = self.trainUniqueUsers[index]
# return user_id and the positive items of the user
return user
def switch2test(self):
"""
change dataset mode to offer test data to dataloader
"""
self.mode = self.mode_dict['test']
def __len__(self):
return len(self.trainUniqueUsers)
class Loader(BasicDataset):
"""
Dataset type for pytorch \n
Incldue graph information
gowalla dataset
"""
def __init__(self,config = world.config,path="../data/gowalla"):
# train or test
cprint(f'loading [{path}]')
self.split = config['A_split']
self.folds = config['A_n_fold']
self.mode_dict = {'train': 0, "test": 1}
self.mode = self.mode_dict['train']
self.n_user = 0
self.m_item = 0
if args.model == 'mf':
train_file = path + '/train.all.txt' # mf
else:
train_file = path + '/train.txt' # lgn
test_file = path + '/test.txt'
self.path = path
trainUniqueUsers, trainItem, trainUser = [], [], []
testUniqueUsers, testItem, testUser = [], [], []
self.traindataSize = 0
self.testDataSize = 0
with open(train_file) as f:
for l in f.readlines():
if len(l) > 0:
l = l.strip('\n').split(' ')
items = [int(i) for i in l[1:]]
uid = int(l[0])
trainUniqueUsers.append(uid)
trainUser.extend([uid] * len(items))
trainItem.extend(items)
self.m_item = max(self.m_item, max(items))
self.n_user = max(self.n_user, uid)
self.traindataSize += len(items)
self.trainUniqueUsers = np.array(trainUniqueUsers)
self.trainUser = np.array(trainUser)
self.trainItem = np.array(trainItem)
with open(test_file) as f:
for l in f.readlines():
if len(l) > 0:
l = l.strip('\n').split(' ')
items = [int(i) for i in l[1:]]
uid = int(l[0])
testUniqueUsers.append(uid)
testUser.extend([uid] * len(items))
testItem.extend(items)
self.m_item = max(self.m_item, max(items))
self.n_user = max(self.n_user, uid)
self.testDataSize += len(items)
self.m_item += 1
self.n_user += 1
self.testUniqueUsers = np.array(testUniqueUsers)
self.testUser = np.array(testUser)
self.testItem = np.array(testItem)
self.Graph = None
print(f"{self.trainDataSize} interactions for training")
print(f"{self.testDataSize} interactions for testing")
print(f"{world.dataset} Sparsity : {(self.trainDataSize + self.testDataSize) / self.n_users / self.m_items}")
# (users,items), bipartite graph
self.UserItemNet = csr_matrix((np.ones(len(self.trainUser)), (self.trainUser, self.trainItem)),
shape=(self.n_user, self.m_item))
self.users_D = np.array(self.UserItemNet.sum(axis=1)).squeeze()
self.users_D[self.users_D == 0.] = 1
self.items_D = np.array(self.UserItemNet.sum(axis=0)).squeeze()
self.items_D[self.items_D == 0.] = 1.
# pre-calculate
self._allPos = self.getUserPosItems(list(range(self.n_user)))
self.__testDict = self.__build_test()
print(f"{world.dataset} is ready to go")
@property
def n_users(self):
return self.n_user
@property
def m_items(self):
return self.m_item
@property
def trainDataSize(self):
return self.traindataSize
@property
def testDict(self):
return self.__testDict
@property
def allPos(self):
return self._allPos
def _split_A_hat(self,A):
A_fold = []
fold_len = (self.n_users + self.m_items) // self.folds
for i_fold in range(self.folds):
start = i_fold*fold_len
if i_fold == self.folds - 1:
end = self.n_users + self.m_items
else:
end = (i_fold + 1) * fold_len
A_fold.append(self._convert_sp_mat_to_sp_tensor(A[start:end]).coalesce().to(world.device))
return A_fold
def _convert_sp_mat_to_sp_tensor(self, X):
coo = X.tocoo().astype(np.float32)
row = torch.Tensor(coo.row).long()
col = torch.Tensor(coo.col).long()
index = torch.stack([row, col])
data = torch.FloatTensor(coo.data)
return torch.sparse.FloatTensor(index, data, torch.Size(coo.shape))
def getSparseGraph_lgn(self): # LightGCN (r=0.5)
print("loading adjacency matrix")
if self.Graph is None:
try:
pre_adj_mat = sp.load_npz(self.path + '/' + args.dataset + '_s_pre_adj_mat.npz')
print("successfully loaded...")
norm_adj = pre_adj_mat
except :
print("generating adjacency matrix")
s = time()
adj_mat = sp.dok_matrix((self.n_users + self.m_items, self.n_users + self.m_items), dtype=np.float32)
adj_mat = adj_mat.tolil()
R = self.UserItemNet.tolil()
adj_mat[:self.n_users, self.n_users:] = R
adj_mat[self.n_users:, :self.n_users] = R.T
adj_mat = adj_mat.todok()
rowsum = np.array(adj_mat.sum(axis=1))
d_inv = np.power(rowsum, -0.5).flatten()
d_inv[np.isinf(d_inv)] = 0.
d_mat = sp.diags(d_inv)
norm_adj = d_mat.dot(adj_mat)
norm_adj = norm_adj.dot(d_mat)
norm_adj = norm_adj.tocsr()
end = time()
print(f"costing {end-s}s, saved norm_mat...")
sp.save_npz(self.path + '/' + args.dataset + '_s_pre_adj_mat.npz', norm_adj)
if self.split == True:
self.Graph = self._split_A_hat(norm_adj)
print("done split matrix")
else:
self.Graph = self._convert_sp_mat_to_sp_tensor(norm_adj)
self.Graph = self.Graph.coalesce().to(world.device)
print("don't split the matrix")
return self.Graph
def getSparseGraph_pc(self):
print("loading adjacency matrix")
if self.Graph is None:
try:
pre_adj_mat = sp.load_npz(self.path + '/' + args.dataset + '_s_pre_adj_mat.npz')
print("successfully loaded...")
norm_adj = pre_adj_mat
rowsum = np.load(self.path + '/' + args.dataset + '_s_pre_degree_mat.npz')
except :
print("generating adjacency matrix")
s = time()
adj_mat = sp.dok_matrix((self.n_users + self.m_items, self.n_users + self.m_items), dtype=np.float32)
adj_mat = adj_mat.tolil()
R = self.UserItemNet.tolil()
adj_mat[:self.n_users, self.n_users:] = R
adj_mat[self.n_users:, :self.n_users] = R.T
adj_mat = adj_mat.todok()
rowsum = np.array(adj_mat.sum(axis=1))
np.save(self.path + '/' + args.dataset + '_s_pre_degree_mat.npz', rowsum)
d_inv = np.power(rowsum, -0.5).flatten()
d_inv[np.isinf(d_inv)] = 0.
d_mat = sp.diags(d_inv)
norm_adj = d_mat.dot(adj_mat)
norm_adj = norm_adj.dot(d_mat)
norm_adj = norm_adj.tocsr()
end = time()
print(f"costing {end-s}s, saved norm_mat...")
sp.save_npz(self.path + '/' + args.dataset + '_s_pre_adj_mat.npz', norm_adj)
if self.split == True:
self.Graph = self._split_A_hat(norm_adj)
print("done split matrix")
else:
self.Graph = self._convert_sp_mat_to_sp_tensor(norm_adj)
self.Graph = self.Graph.coalesce().to(world.device)
print("don't split the matrix")
return self.Graph, rowsum
# def getSparseGraph(self): # debiased LightGCN (r=0.5)
# print("loading adjacency matrix")
# if self.Graph is None:
# try:
# pre_adj_mat = sp.load_npz(self.path + '/' + args.dataset + '_s_exp_adj_mat.npz')
# print("successfully loaded...")
# norm_adj = pre_adj_mat
# except :
# print("generating adjacency matrix")
# exp_prob_csr = sp.load_npz('exp_prob.npz')
# print("exp_prob_csr.shape: ", exp_prob_csr.shape)
# s = time()
# adj_mat = sp.dok_matrix((self.n_users + self.m_items, self.n_users + self.m_items), dtype=np.float32)
# adj_mat = adj_mat.tolil()
# R = self.UserItemNet.tolil()
# R_new = R * exp_prob_csr
# adj_mat[:self.n_users, self.n_users:] = R_new
# adj_mat[self.n_users:, :self.n_users] = R_new.T
# adj_mat = adj_mat.todok()
# rowsum = np.array(adj_mat.sum(axis=1))
# d_inv = np.power(rowsum, -0.5).flatten()
# d_inv[np.isinf(d_inv)] = 0.
# d_mat = sp.diags(d_inv)
# norm_adj = d_mat.dot(adj_mat)
# norm_adj = norm_adj.dot(d_mat)
# norm_adj = norm_adj.tocsr()
# end = time()
# print(f"costing {end-s}s, saved norm_mat...")
# sp.save_npz(self.path + '/' + args.dataset + '_s_exp_adj_mat.npz', norm_adj)
# if self.split == True:
# self.Graph = self._split_A_hat(norm_adj)
# print("done split matrix")
# else:
# self.Graph = self._convert_sp_mat_to_sp_tensor(norm_adj)
# self.Graph = self.Graph.coalesce().to(world.device)
# print("don't split the matrix")
# return self.Graph
def getSparseGraph_adjnorm(self): # r-adjnorm (r=0.75, r=1.0, r=1.5)
print("loading adjacency matrix")
if self.Graph is None:
try:
pre_adj_mat = sp.load_npz(self.path + '/' + args.dataset + '_s_pre_1.0_adj_mat.npz')
print("successfully loaded...")
norm_adj = pre_adj_mat
except:
print("generating adjacency matrix")
s = time()
adj_mat = sp.dok_matrix((self.n_users + self.m_items, self.n_users + self.m_items), dtype=np.float32)
adj_mat = adj_mat.tolil()
R = self.UserItemNet.tolil()
adj_mat[:self.n_users, self.n_users:] = R
adj_mat[self.n_users:, :self.n_users] = R.T
adj_mat = adj_mat.todok()
rowsum = np.array(adj_mat.sum(axis=1))
# r=0.75
# r = 1.0
d_inv = np.power(rowsum, -1).flatten()
d_inv[np.isinf(d_inv)] = 0.
d_mat = sp.diags(d_inv)
norm_adj = d_mat.dot(adj_mat)
# r = 1.5
# d_inv = np.power(rowsum, -1.5).flatten()
# d_inv[np.isinf(d_inv)] = 0.
# d_mat = sp.diags(d_inv)
# d_inv2 = np.power(rowsum, 0.5).flatten()
# d_inv2[np.isinf(d_inv2)] = 0.
# d_mat2 = sp.diags(d_inv2)
# norm_adj = d_mat.dot(adj_mat)
# norm_adj = norm_adj.dot(d_mat2)
norm_adj = norm_adj.tocsr()
end = time()
print(f"costing {end-s}s, saved norm_mat...")
sp.save_npz(self.path + '/' + args.dataset + '_s_pre_1.0_adj_mat.npz', norm_adj)
if self.split == True:
self.Graph = self._split_A_hat(norm_adj)
print("done split matrix")
else:
self.Graph = self._convert_sp_mat_to_sp_tensor(norm_adj)
self.Graph = self.Graph.coalesce().to(world.device)
print("don't split the matrix")
return self.Graph
def getSparseGraph_navip(self): # NAVIP, APDA
print("loading adjacency matrix")
if self.Graph is None:
try:
pre_adj_mat = sp.load_npz(self.path + '/' + args.dataset + '_s_pre_adj_mat_navip.npz')
print("successfully loaded...")
norm_adj = pre_adj_mat
except:
print("generating adjacency matrix of NAVIP")
s = time()
adj_mat = sp.dok_matrix((self.n_users + self.m_items, self.n_users + self.m_items), dtype=np.float32)
adj_mat = adj_mat.tolil()
R = self.UserItemNet.tolil()
adj_mat[:self.n_users, self.n_users:] = R
adj_mat[self.n_users:, :self.n_users] = R.T
adj_mat = adj_mat.todok()
csr_matrix = adj_mat.tocsr()
sp.save_npz('ml1m_adj_mat.npz', csr_matrix)
# adj_mat = sp.load_npz('amazon_adj_mat.npz')
# adj_mat = adj_mat.todok()
# NAVIP
rowsum = np.array(adj_mat.sum(axis=1))
d_inv = np.power(rowsum, -0.5).flatten()
d_inv[np.isinf(d_inv)] = 0.
d_inv[:self.n_users] = 0.
d_max = np.max(d_inv)
d_inv = d_max / d_inv
print("d_inv.shape: ", d_inv.shape) # (70839)
navip_mat = sp.dok_matrix((self.n_users + self.m_items, self.n_users + self.m_items), dtype=np.float32)
navip_mat = navip_mat.tolil()
core_matrix = np.tile(d_inv[self.n_users:], (self.n_users,1))
print("core_matrix.shape: ", core_matrix.shape)# shape: (user, item)
print("self.UserItemNet shape: ", self.UserItemNet.shape)
core_matrix = self.UserItemNet.multiply(core_matrix)
print("after product core_matrix shape: ", core_matrix.shape)
core_matrix = sp.csr_matrix(core_matrix)
print("new core_matrix.shape: ", core_matrix.shape)# shape: (user, item)
core_matrix_lil = core_matrix.tolil()
print("core_matrix_lil.shape: ", core_matrix_lil.shape)# shape: (user, item)
navip_mat[:self.n_users, self.n_users:] = core_matrix_lil
navip_mat[self.n_users:, :self.n_users] = core_matrix_lil.T
print("navip_mat.shape: ", navip_mat.shape)
rowsum = np.array(navip_mat.sum(axis=1))
d_inv = np.power(rowsum, -1).flatten()
d_inv[np.isinf(d_inv)] = 0.
d_mat = sp.diags(d_inv)
norm_adj = d_mat.dot(navip_mat)
norm_adj = norm_adj.tocsr()
print("norm_adj.shape: ", norm_adj.shape)
end = time()
print(f"costing {end-s}s, saved norm_mat...")
sp.save_npz(self.path + '/' + args.dataset + '_s_pre_adj_mat_navip.npz', norm_adj)
if self.split == True:
self.Graph = self._split_A_hat(norm_adj)
print("done split matrix")
else:
if args.model == 'lgn-apda':
all_ones_matrix = np.ones([norm_adj.shape[0], norm_adj.shape[1]])
# Step 1: Convert to dense NumPy array
dense_matrix = norm_adj.toarray()
# Step 2: Calculate L2 norm for each row
row_norms = np.linalg.norm(dense_matrix, axis=1, ord=2)
# Step 3: Divide each row by its L2 norm
row_norms = np.where(row_norms==0, 1e-5, row_norms)
normalized_matrix = dense_matrix / row_norms[:, np.newaxis]
norm_adj = all_ones_matrix - normalized_matrix
norm_adj = np.exp(norm_adj)
# Step 4: Convert back to CSR matrix
norm_adj = sp.csr_matrix(normalized_matrix)
self.Graph = self._convert_sp_mat_to_sp_tensor(norm_adj)
self.Graph = self.Graph.coalesce().to(world.device)
print("don't split the matrix")
return self.Graph
def __build_test(self):
"""
return:
dict: {user: [items]}
"""
test_data = {}
for i, item in enumerate(self.testItem):
user = self.testUser[i]
if test_data.get(user):
test_data[user].append(item)
else:
test_data[user] = [item]
return test_data
def getUserItemFeedback(self, users, items):
"""
users:
shape [-1]
items:
shape [-1]
return:
feedback [-1]
"""
# print(self.UserItemNet[users, items])
return np.array(self.UserItemNet[users, items]).astype('uint8').reshape((-1,))
def getUserPosItems(self, users):
posItems = []
for user in users:
posItems.append(self.UserItemNet[user].nonzero()[1])
return posItems
# def getUserNegItems(self, users):
# negItems = []
# for user in users:
# negItems.append(self.allNeg[user])
# return negItems