-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
277 lines (250 loc) · 11.6 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import world
import torch
from dataloader import BasicDataset
from torch import nn
import numpy as np
import torch.nn.functional as F
import sys
from parse import parse_args
args = parse_args()
class BasicModel(nn.Module):
def __init__(self):
super(BasicModel, self).__init__()
def getUsersRating(self, users):
raise NotImplementedError
class PairWiseModel(BasicModel):
def __init__(self):
super(PairWiseModel, self).__init__()
def bpr_loss(self, users, pos, neg):
"""
Parameters:
users: users list
pos: positive items for corresponding users
neg: negative items for corresponding users
Return:
(log-loss, l2-loss)
"""
raise NotImplementedError
class PureMF(BasicModel):
def __init__(self,
config:dict,
dataset:BasicDataset):
super(PureMF, self).__init__()
self.num_users = dataset.n_users
self.num_items = dataset.m_items
self.latent_dim = config['latent_dim_rec']
self.f = nn.Sigmoid()
self.__init_weight()
def __init_weight(self):
self.embedding_user = torch.nn.Embedding(num_embeddings=self.num_users, embedding_dim=self.latent_dim)
self.embedding_item = torch.nn.Embedding(num_embeddings=self.num_items, embedding_dim=self.latent_dim)
print("using Normal distribution N(0,1) initialization for PureMF")
def getUsersRating(self, users):
users = users.long()
users_emb = self.embedding_user(users)
items_emb = self.embedding_item.weight
scores = torch.matmul(users_emb, items_emb.t())
return self.f(scores)
def bpr_loss(self, users, pos, neg, batch_i):
users_emb = self.embedding_user(users.long())
pos_emb = self.embedding_item(pos.long())
neg_emb = self.embedding_item(neg.long())
pos_scores = torch.sum( (users_emb*pos_emb) / (torch.norm(users_emb)*torch.norm(pos_emb)), dim=1)
neg_scores = torch.sum( (users_emb*neg_emb) / (torch.norm(users_emb)*torch.norm(neg_emb)), dim=1)
loss = torch.mean(nn.functional.softplus(neg_scores - pos_scores))
reg_loss = (1/2)*(users_emb.norm(2).pow(2) + pos_emb.norm(2).pow(2) + neg_emb.norm(2).pow(2))/float(len(users))
return loss, reg_loss
def forward(self, users, items):
users = users.long()
items = items.long()
users_emb = self.embedding_user(users)
items_emb = self.embedding_item(items)
scores = torch.sum(users_emb*items_emb, dim=1)
return self.f(scores)
class LightGCN(BasicModel):
def __init__(self,
config:dict,
dataset:BasicDataset):
super(LightGCN, self).__init__()
self.config = config
self.dataset : dataloader.BasicDataset = dataset
self.__init_weight()
def __init_weight(self):
self.num_users = self.dataset.n_users
self.num_items = self.dataset.m_items
self.latent_dim = self.config['latent_dim_rec']
self.n_layers = self.config['lightGCN_n_layers']
self.keep_prob = self.config['keep_prob']
self.A_split = self.config['A_split']
self.embedding_user = torch.nn.Embedding(
num_embeddings=self.num_users, embedding_dim=self.latent_dim)
self.embedding_item = torch.nn.Embedding(
num_embeddings=self.num_items, embedding_dim=self.latent_dim)
if self.config['pretrain'] == 0:
nn.init.normal_(self.embedding_user.weight, std=0.1)
nn.init.normal_(self.embedding_item.weight, std=0.1)
world.cprint('use NORMAL distribution initilizer')
else:
self.embedding_user.weight.data.copy_(torch.from_numpy(self.config['user_emb']))
self.embedding_item.weight.data.copy_(torch.from_numpy(self.config['item_emb']))
print('use pretarined data')
self.f = nn.Sigmoid()
if args.model in ['lgn', 'lgn-navip']:
self.Graph = self.dataset.getSparseGraph_lgn()
elif args.model in ['lgn-apda']:
self.Graph = self.dataset.getSparseGraph_navip()
elif args.model == 'lgn-adjnorm':
self.Graph = self.dataset.getSparseGraph_adjnorm()
elif args.model == 'lgn-pc':
self.Graph, self.rowsum = self.dataset.getSparseGraph_pc()
elif args.model == 'lgn-reg':
self.Graph, self.rowsum = self.dataset.getSparseGraph_pc()
elif args.model == 'lgn-macr':
self.Graph, self.rowsum = self.dataset.getSparseGraph_pc()
elif args.model == 'ours':
self.Graph = self.dataset.getSparseGraph_lgn()
self.embed_user_first = torch.Tensor(np.load('lgn_embed_user_'+args.dataset+'.npy'))
self.embed_item_first = torch.Tensor(np.load('lgn_embed_item_'+args.dataset+'.npy'))
self.sim_score = self.f(torch.mm(self.embed_user_first, self.embed_item_first.T))
self.alpha = args.alpha
print("alpha: ", self.alpha)
self.exp_prob = torch.max(self.alpha * torch.ones([self.num_users, self.num_items]), self.sim_score)
print("self.exp_prob, min, max: ", torch.min(self.exp_prob), torch.max(self.exp_prob))
print("Exposure probability matrix is computed")
print(f"lgn is already to go(dropout:{self.config['dropout']})")
def __dropout_x(self, x, keep_prob):
size = x.size()
index = x.indices().t()
values = x.values()
random_index = torch.rand(len(values)) + keep_prob
random_index = random_index.int().bool()
index = index[random_index]
values = values[random_index]/keep_prob
g = torch.sparse.FloatTensor(index.t(), values, size)
return g
def __dropout(self, keep_prob):
if self.A_split:
graph = []
for g in self.Graph:
graph.append(self.__dropout_x(g, keep_prob))
else:
graph = self.__dropout_x(self.Graph, keep_prob)
return graph
def computer(self):
"""
propagate methods for lightGCN
"""
users_emb = self.embedding_user.weight
items_emb = self.embedding_item.weight
all_emb = torch.cat([users_emb, items_emb])
# torch.split(all_emb , [self.num_users, self.num_items])
embs = [all_emb]
if self.config['dropout']:
if self.training:
print("droping")
g_droped = self.__dropout(self.keep_prob)
else:
g_droped = self.Graph
else:
g_droped = self.Graph
# APDA
if args.model == 'lgn-apda':
all_emb_new = all_emb
cof_lambda = 0.6
for layer in range(self.n_layers):
if self.A_split:
temp_emb = []
for f in range(len(g_droped)):
temp_emb.append(torch.sparse.mm(g_droped[f], all_emb))
side_emb = torch.cat(temp_emb, dim=0)
all_emb = side_emb
else:
all_emb_new = all_emb_new + cof_lambda * all_emb
all_emb_new = torch.sparse.mm(g_droped, all_emb_new)
all_emb_new_norm = F.normalize(all_emb_new, p=2, dim=1)
embs.append(all_emb_new_norm)
else:
for layer in range(self.n_layers):
if self.A_split:
temp_emb = []
for f in range(len(g_droped)):
temp_emb.append(torch.sparse.mm(g_droped[f], all_emb))
side_emb = torch.cat(temp_emb, dim=0)
all_emb = side_emb
else:
all_emb = torch.sparse.mm(g_droped, all_emb)
embs.append(all_emb)
embs = torch.stack(embs, dim=1)
light_out = torch.mean(embs, dim=1)
users, items = torch.split(light_out, [self.num_users, self.num_items])
return users, items
def getUsersRating(self, users):
all_users, all_items = self.computer()
users_emb = all_users[users.long()]
items_emb = all_items
rating = self.f(torch.matmul(users_emb, items_emb.t()))
return rating
def getEmbedding(self, users, pos_items, neg_items):
all_users, all_items = self.computer()
users_emb = all_users[users]
pos_emb = all_items[pos_items]
neg_emb = all_items[neg_items]
users_emb_ego = self.embedding_user(users)
pos_emb_ego = self.embedding_item(pos_items)
neg_emb_ego = self.embedding_item(neg_items)
return users_emb, pos_emb, neg_emb, users_emb_ego, pos_emb_ego, neg_emb_ego
def bpr_loss(self, users, pos, neg, batch_i):
(users_emb, pos_emb, neg_emb,
userEmb0, posEmb0, negEmb0) = self.getEmbedding(users.long(), pos.long(), neg.long())
reg_loss = (1/2)*(userEmb0.norm(2).pow(2) +
posEmb0.norm(2).pow(2) +
negEmb0.norm(2).pow(2))/float(len(users))
pos_scores = torch.mul(users_emb, pos_emb)
pos_scores = torch.sum(pos_scores, dim=1)
neg_scores = torch.mul(users_emb, neg_emb)
neg_scores = torch.sum(neg_scores, dim=1)
# Debiased LightGCN
if args.model == 'ours':
propensity_scores = 1.0 / self.exp_prob[users.long(), pos.long()].to(pos_scores.device)
loss = torch.mean(propensity_scores * torch.nn.functional.softplus(neg_scores - pos_scores))
elif args.model == 'lgn-pc':
pc_alpha = 1.0
degree_mat = torch.from_numpy(self.rowsum).to(pos_scores.device)
threshold = torch.ones(pos.shape).to(pos_scores.device)
threshold = threshold * 1e-5
aaa = torch.squeeze(degree_mat[pos])
bbb = torch.squeeze(degree_mat[neg])
pos_scores = pos_scores + pc_alpha * 1.0 / torch.max(aaa, threshold)
neg_scores = neg_scores + pc_alpha * 1.0 / torch.max(bbb, threshold)
loss = torch.mean(torch.nn.functional.softplus(neg_scores - pos_scores))
elif args.model == 'lgn-reg':
rec_loss = torch.mean(torch.nn.functional.softplus(neg_scores - pos_scores))
cof_gamma = 1e-4
degree_mat = torch.from_numpy(self.rowsum).to(pos_scores.device)
aaa = torch.squeeze(degree_mat[pos])
pcc_loss = torch.cosine_similarity(pos_scores, aaa, dim=0)
loss = rec_loss + cof_gamma * pcc_loss
elif args.model == 'lgn-macr':
macr_alpha = 1.0
macr_beta = 1.0
eps = 1e-7
degree_mat = torch.from_numpy(self.rowsum).to(pos_scores.device)
degree_mat = self.f(degree_mat)
pos_scores = self.f(pos_scores)
neg_scores = self.f(neg_scores)
rec_loss = torch.mean( - torch.log(pos_scores + eps) - torch.log(1-neg_scores + eps) )
item_loss = torch.mean( - torch.log(degree_mat[pos] + eps) - torch.log(1-degree_mat[neg] + eps) )
user_loss = torch.mean( - torch.log(degree_mat[users] + eps) - torch.log(1-degree_mat[users] + eps) )
loss = rec_loss + macr_alpha*item_loss + macr_beta*user_loss
# LightGCN
else:
loss = torch.mean(torch.nn.functional.softplus(neg_scores - pos_scores))
return loss, reg_loss
def forward(self, users, items):
# compute embedding
all_users, all_items = self.computer()
users_emb = all_users[users]
items_emb = all_items[items]
inner_pro = torch.mul(users_emb, items_emb)
gamma = torch.sum(inner_pro, dim=1)
return gamma