-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLeftmostOutlierSeg.sv
424 lines (379 loc) · 15.7 KB
/
LeftmostOutlierSeg.sv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
module LeftmostOutlierSeg #(
parameter NUM_LR = 4,
//only support dimm=8 now
parameter dimm = 64,
parameter IndexWidth = $clog2(dimm),
parameter PIPELINE = 6'b000001
)(
input logic clk,
input logic rst_n,
// input logic ready,
input logic [dimm-1 : 0] overflow,
output logic [dimm-1 : 0][IndexWidth-1 : 0] index
// output logic valid
);
// ###################### pipeline detect use leading zero detector #####################
// // `include "DW_lzd_function.inc"
// logic [dimm-1:0] DWF_lzd_in;
// logic [dimm-1:0] DWF_lzd_feedback;
// logic [dimm-1:0] overflow_reg;
// logic ready_d1, ready_d2, ready_d3;
// always_ff@(posedge clk or negedge rst_n) begin
// if(!rst_n) begin
// ready_d1 <= 'b0;
// ready_d2 <= 'b0;
// ready_d3 <= 'b0;
// valid <= 'b0;
// end
// else begin
// ready_d1 <= ready;
// ready_d2 <= ready_d1;
// ready_d3 <= ready_d2;
// valid <= ready_d3;
// end
// end
// always_ff@(posedge clk or negedge rst_n) begin
// if(!rst_n) begin
// overflow_reg <= 'b0;
// end
// else if(ready) begin
// overflow_reg <= overflow;
// end
// else begin
// overflow_reg <= overflow_reg;
// end
// end
// assign dec_func = DWF_lzd(DWF_lzd_in);
// assign enc_func = DWF_lzd_enc(DWF_lzd_in);
// always_ff@(posedge clk or negedge rst_n) begin
// if(!rst_n) begin
// DWF_lzd_in <= 'b0;
// end
// else begin
// if(ready) begin
// DWF_lzd_in <= overflow;
// end
// else begin
// DWF_lzd_in <= DWF_lzd_feedback;
// end
// end
// end
// always_comb begin
// case(enc_func)
// 4'b1111:
// DWF_lzd_feedback = overflow_reg & 8'b0000_0000;
// 4'b0000:
// DWF_lzd_feedback = overflow_reg & 8'b0111_1111;
// 4'b0001:
// DWF_lzd_feedback = overflow_reg & 8'b0011_1111;
// 4'b0010:
// DWF_lzd_feedback = overflow_reg & 8'b0001_1111;
// default:
// DWF_lzd_feedback = 8'b0000_0000;
// endcase
// end
// always_ff@(posedge clk or negedge rst_n) begin
// if(!rst_n) begin
// index <= 'b0;
// end
// else if(ready_d1) begin
// index[0] <= enc_func;
// end
// else begin
// index[0] <= index[0];
// end
// end
// always_ff@(posedge clk or negedge rst_n) begin
// if(!rst_n) begin
// index <= 'b0;
// end
// else if(ready_d2) begin
// index[1] <= enc_func;
// end
// else begin
// index[1] <= index[1];
// end
// end
// always_ff@(posedge clk or negedge rst_n) begin
// if(!rst_n) begin
// index <= 'b0;
// end
// else if(ready_d3) begin
// index[2] <= enc_func;
// end
// else begin
// index[2] <= index[2];
// end
// end
// always_ff@(posedge clk or negedge rst_n) begin
// if(!rst_n) begin
// index <= 'b0;
// end
// else if(ready_d3) begin
// index[3] <= enc_func;
// end
// else begin
// index[3] <= index[3];
// end
// end
// ########################### version2 #################################
// ################## automization ###################
localparam [$clog2(dimm)-1:0] PIPE = PIPELINE;
logic [dimm-1:0][IndexWidth-1:0] IndexSeq;
generate
for(genvar i=0; i<dimm; i++) begin
assign IndexSeq[i] = i;
end
endgenerate
generate
for(genvar j=0; j<$clog2(dimm); j++) begin:stride
localparam NUM_SHIFT = 2**j;
logic [dimm-1:0][IndexWidth-1:0] num_zeros_stg;
logic [dimm-1:0] overflow_stg;
logic [dimm-1:0][IndexWidth-1:0] IndexSeq_stg;
// pt1. prefix sum module
if(j==0) begin
for(genvar i=0; i<dimm; i++) begin
if(i==0) begin
assign num_zeros_stg[i] = 0;
end
else begin
assign num_zeros_stg[i] = num_zeros_stg[i-1] + ~overflow[i-1];
end
end
end else begin
for(genvar i=0; i<dimm; i++) begin
if(i==0) begin
assign num_zeros_stg[i] = 0;
end
else begin
assign num_zeros_stg[i] = num_zeros_stg[i-1] + ~stride[j-1].overflow_stg[i-1];
end
end
end
// pt2. mux tree module
for(genvar i=0; i<dimm-NUM_SHIFT; i++) begin:scan_stride
logic [IndexWidth-1:0] IndexSeqMux0;
logic [IndexWidth-1:0] IndexSeqMux1;
logic overflowMux0;
logic overflowMux1;
if(j==0) begin
if(i<NUM_SHIFT) begin
assign IndexSeqMux0 = (num_zeros_stg[i+NUM_SHIFT][j] == 1'b1) ? IndexSeq[i+NUM_SHIFT] : IndexSeq[0];
assign IndexSeqMux1 = (num_zeros_stg[i+NUM_SHIFT][j] == 1'b1) ? IndexSeq[0] : IndexSeq[i+NUM_SHIFT];
assign overflowMux0 = (num_zeros_stg[i+NUM_SHIFT][j] == 1'b1) ? overflow[i+NUM_SHIFT] : overflow[0];
assign overflowMux1 = (num_zeros_stg[i+NUM_SHIFT][j] == 1'b1) ? overflow[0] : overflow[i+NUM_SHIFT];
end else begin
assign IndexSeqMux0 = (num_zeros_stg[i+NUM_SHIFT][j] == 1'b1) ? IndexSeq[i+NUM_SHIFT] : scan_stride[i-NUM_SHIFT].IndexSeqMux1;
assign IndexSeqMux1 = (num_zeros_stg[i+NUM_SHIFT][j] == 1'b1) ? scan_stride[i-NUM_SHIFT].IndexSeqMux1 : IndexSeq[i+NUM_SHIFT];
assign overflowMux0 = (num_zeros_stg[i+NUM_SHIFT][j] == 1'b1) ? overflow[i+NUM_SHIFT] : scan_stride[i-NUM_SHIFT].overflowMux1;
assign overflowMux1 = (num_zeros_stg[i+NUM_SHIFT][j] == 1'b1) ? scan_stride[i-NUM_SHIFT].overflowMux1 : overflow[i+NUM_SHIFT];
end
end else begin
if(i<NUM_SHIFT) begin
assign IndexSeqMux0 = (num_zeros_stg[i+NUM_SHIFT][j] == 1'b1) ? stride[j-1].IndexSeq_stg[i+NUM_SHIFT] : stride[j-1].IndexSeq_stg[0];
assign IndexSeqMux1 = (num_zeros_stg[i+NUM_SHIFT][j] == 1'b1) ? stride[j-1].IndexSeq_stg[0] : stride[j-1].IndexSeq_stg[i+NUM_SHIFT];
assign overflowMux0 = (num_zeros_stg[i+NUM_SHIFT][j] == 1'b1) ? stride[j-1].overflow_stg[i+NUM_SHIFT] : stride[j-1].overflow_stg[0];
assign overflowMux1 = (num_zeros_stg[i+NUM_SHIFT][j] == 1'b1) ? stride[j-1].overflow_stg[0] : stride[j-1].overflow_stg[i+NUM_SHIFT];
end else begin
assign IndexSeqMux0 = (num_zeros_stg[i+NUM_SHIFT][j] == 1'b1) ? stride[j-1].IndexSeq_stg[i+NUM_SHIFT] : scan_stride[i-NUM_SHIFT].IndexSeqMux1;
assign IndexSeqMux1 = (num_zeros_stg[i+NUM_SHIFT][j] == 1'b1) ? scan_stride[i-NUM_SHIFT].IndexSeqMux1 : stride[j-1].IndexSeq_stg[i+NUM_SHIFT];
assign overflowMux0 = (num_zeros_stg[i+NUM_SHIFT][j] == 1'b1) ? stride[j-1].overflow_stg[i+NUM_SHIFT] : scan_stride[i-NUM_SHIFT].overflowMux1;
assign overflowMux1 = (num_zeros_stg[i+NUM_SHIFT][j] == 1'b1) ? scan_stride[i-NUM_SHIFT].overflowMux1 : stride[j-1].overflow_stg[i+NUM_SHIFT];
end
end
end
// pt3. connect mux tree to output in a stride loop
if(~PIPE[j]) begin
for(genvar i=0; i<dimm; i++) begin
if(j==$clog2(dimm)-1) begin
if(i < dimm-NUM_SHIFT) begin
assign index[i] = scan_stride[i].IndexSeqMux0;
end else begin
assign index[i] = scan_stride[i-NUM_SHIFT].IndexSeqMux1;
end
end else begin
if(i < dimm-NUM_SHIFT) begin
assign IndexSeq_stg[i] = scan_stride[i].IndexSeqMux0;
assign overflow_stg[i] = scan_stride[i].overflowMux0;
end else begin
assign IndexSeq_stg[i] = scan_stride[i-NUM_SHIFT].IndexSeqMux1;
assign overflow_stg[i] = scan_stride[i-NUM_SHIFT].overflowMux1;
end
end
end
end else begin
for(genvar i=0; i<dimm; i++) begin
if(j==$clog2(dimm)-1) begin
if(i < dimm-NUM_SHIFT) begin
always_ff@(posedge clk or negedge rst_n) begin
if(!rst_n)
index[i] <= 0;
else
index[i] <= scan_stride[i].IndexSeqMux0;
end
end else begin
always_ff@(posedge clk or negedge rst_n) begin
if(!rst_n)
index[i] <= 0;
else
index[i] <= scan_stride[i-NUM_SHIFT].IndexSeqMux1;
end
end
end else begin
if(i < dimm-NUM_SHIFT) begin
always_ff@(posedge clk or negedge rst_n) begin
if(!rst_n) begin
IndexSeq_stg[i] <= 0;
overflow_stg[i] <= 0;
end else begin
IndexSeq_stg[i] <= scan_stride[i].IndexSeqMux0;
overflow_stg[i] <= scan_stride[i].overflowMux0;
end
end
end else begin
always_ff@(posedge clk or negedge rst_n) begin
if(!rst_n) begin
IndexSeq_stg[i] <= 0;
overflow_stg[i] <= 0;
end else begin
IndexSeq_stg[i] <= scan_stride[i-NUM_SHIFT].IndexSeqMux1;
overflow_stg[i] <= scan_stride[i-NUM_SHIFT].overflowMux1;
end
end
end
end
end
end
end
endgenerate
// // ########### normal ################
// // stage 1 stride 1
// logic [dimm-1:0][IndexWidth-1:0] num_zeros;
// generate
// for(genvar i=0; i<dimm; i++) begin
// if(i==0) begin
// assign num_zeros[i] = 0;
// end
// else begin
// assign num_zeros[i] = num_zero[i-1] + ~overflow[i-1];
// end
// end
// endgenerate
// generate
// for(genvar i=0; i<dimm-1; i++) begin:scan_stride1
// logic [IndexWidth-1:0] IndexSeqMux0;
// logic [IndexWidth-1:0] IndexSeqMux1;
// logic overflowMux0;
// logic overflowMux1;
// if(i==0) begin
// assign IndexSeqMux0 = (num_zeros[1][0] == 1'b1) ? IndexSeq[1] : IndexSeq[0];
// assign IndexSeqMux1 = (num_zeros[1][0] == 1'b1) ? IndexSeq[0] : IndexSeq[1];
// assign overflowMux0 = (num_zeros[1][0] == 1'b1) ? overflow[1] : overflow[0];
// assign overflowMux1 = (num_zeros[1][0] == 1'b1) ? overflow[0] : overflow[1];
// end else begin
// assign IndexSeqMux0 = (num_zeros[i+1][0] == 1'b1) ? IndexSeq[i+1] : scan_stride1[i-1].IndexSeqMux1;
// assign IndexSeqMux1 = (num_zeros[i+1][0] == 1'b1) ? scan_stride1[i-1].IndexSeqMux1 : IndexSeq[i+1];
// assign overflowMux0 = (num_zeros[i+1][0] == 1'b1) ? overflow[i+1] : scan_stride1[i-1].overflowMux1;
// assign overflowMux1 = (num_zeros[i+1][0] == 1'b1) ? scan_stride1[i-1].overflowMux1 : overflow[i+1];
// end
// end
// endgenerate
// // wires used as stg2 input
// logic [dimm-1:0][IndexWidth-1:0] IndexSeq_stg1;
// logic [dimm-1:0] overflow_stg1;
// logic [dimm-1:0][IndexWidth-1:0] num_zeros_stg1;
// // connect wires
// generate
// for(genvar i=0; i<dimm; i++) begin
// if(i == dimm-1) begin
// assign IndexSeq_stg1[i] = scan_stride1[i-1].IndexSeqMux1;
// assign overflow_stg1[i] = scan_stride1[i-1].overflowMux1;
// end else begin
// assign IndexSeq_stg1[i] = scan_stride1[i].IndexSeqMux0;
// assign overflow_stg1[i] = scan_stride1[i].overflowMux0;
// end
// end
// endgenerate
// // stage 2 stride 2
// // prefix sum module
// generate
// for(genvar i=0; i<dimm; i++) begin
// if(i==0) begin
// assign num_zeros_stg1[i] = 0;
// end
// else begin
// assign num_zeros_stg1[i] = num_zero_stg1[i-1] + ~overflow_stg1[i-1];
// end
// end
// endgenerate
// // wires used as stg3 input
// logic [dimm-1:0][IndexWidth-1:0] IndexSeq_stg2;
// logic [dimm-1:0] overflow_stg2;
// logic [dimm-1:0][IndexWidth-1:0] num_zeros_stg2;
// generate
// for(genvar i=0; i<dimm-2; i++) begin:scan_stride2
// logic [IndexWidth-1:0] IndexSeqMux0;
// logic [IndexWidth-1:0] IndexSeqMux1;
// logic overflowMux0;
// logic overflowMux1;
// if(i==0) begin
// assign IndexSeqMux0 = (num_zeros_stg1[2][1] == 1'b1) ? IndexSeq_stg1[2] : IndexSeq_stg1[0];
// assign IndexSeqMux1 = (num_zeros_stg1[2][1] == 1'b1) ? IndexSeq_stg1[0] : IndexSeq_stg1[2];
// assign overflowMux0 = (num_zeros_stg1[2][1] == 1'b1) ? overflow_stg1[2] : overflow_stg1[0];
// assign overflowMux1 = (num_zeros_stg1[2][1] == 1'b1) ? overflow_stg1[0] : overflow_stg1[2];
// end else begin
// assign IndexSeqMux0 = (num_zeros_stg1[i+2][1] == 1'b1) ? IndexSeq_stg1[i+2] : scan_stride2[i-1].IndexSeqMux1;
// assign IndexSeqMux1 = (num_zeros_stg1[i+2][1] == 1'b1) ? scan_stride2[i-1].IndexSeqMux1 : IndexSeq[i+2];
// assign overflowMux0 = (num_zeros_stg1[i+2][1] == 1'b1) ? overflow[i+2] : scan_stride2[i-1].overflowMux1;
// assign overflowMux1 = (num_zeros_stg1[i+2][1] == 1'b1) ? scan_stride2[i-1].overflowMux1 : overflow[i+2];
// end
// end
// endgenerate
// // connect wires
// generate
// for(genvar i=0; i<dimm; i++) begin
// if(i == dimm-1) begin
// assign IndexSeq_stg2[i] = scan_stride2[i-1].IndexSeqMux1;
// assign overflow_stg2[i] = scan_stride2[i-1].overflowMux1;
// end else begin
// assign IndexSeq_stg2[i] = scan_stride2[i].IndexSeqMux0;
// assign overflow_stg2[i] = scan_stride2[i].overflowMux0;
// end
// end
// endgenerate
// // stage 3 stride 4
// generate
// for(genvar i=0; i<dimm; i++) begin
// if(i==0) begin
// assign num_zeros_stg2[i] = 0;
// end
// else begin
// assign num_zeros_stg2[i] = num_zero_stg2[i-1] + ~overflow_stg2[i-1];
// end
// end
// endgenerate
// generate
// for(genvar i=0; i<dimm-4; i++) begin:scan_stride4
// logic [IndexWidth-1:0] IndexSeqMux0;
// logic [IndexWidth-1:0] IndexSeqMux1;
// if(i==0) begin
// assign IndexSeqMux0 = (num_zeros_stg2[2][1] == 1'b1) ? IndexSeq_stg2[4] : IndexSeq_stg2[0];
// assign IndexSeqMux1 = (num_zeros_stg2[2][1] == 1'b1) ? IndexSeq_stg2[0] : IndexSeq_stg2[4];
// end else begin
// assign IndexSeqMux0 = (num_zeros_stg2[i+1][1] == 1'b1) ? IndexSeq_stg1[i+4] : scan_stride4[i-1].IndexSeqMux1;
// assign IndexSeqMux1 = (num_zeros_stg2[i+1][1] == 1'b1) ? scan_stride4[i-1].IndexSeqMux1 : IndexSeq[i+4];
// end
// end
// endgenerate
// // connect wires
// generate
// for(genvar i=0; i<dimm; i++) begin
// if(i == dimm-1) begin
// assign index[i] = scan_stride4[i-1].IndexSeqMux1;
// end else begin
// assign index[i] = scan_stride4[i].IndexSeqMux0;
// end
// end
// endgenerate
endmodule