forked from datamllab/rlcard
-
Notifications
You must be signed in to change notification settings - Fork 0
/
random_agent.py
47 lines (35 loc) · 1.56 KB
/
random_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import numpy as np
class RandomAgent(object):
''' A random agent. Random agents is for running toy examples on the card games
'''
def __init__(self, num_actions):
''' Initilize the random agent
Args:
num_actions (int): The size of the ouput action space
'''
self.use_raw = False
self.num_actions = num_actions
@staticmethod
def step(state):
''' Predict the action given the curent state in gerenerating training data.
Args:
state (dict): An dictionary that represents the current state
Returns:
action (int): The action predicted (randomly chosen) by the random agent
'''
return np.random.choice(list(state['legal_actions'].keys()))
def eval_step(self, state):
''' Predict the action given the current state for evaluation.
Since the random agents are not trained. This function is equivalent to step function
Args:
state (dict): An dictionary that represents the current state
Returns:
action (int): The action predicted (randomly chosen) by the random agent
probs (list): The list of action probabilities
'''
probs = [0 for _ in range(self.num_actions)]
for i in state['legal_actions']:
probs[i] = 1/len(state['legal_actions'])
info = {}
info['probs'] = {state['raw_legal_actions'][i]: probs[list(state['legal_actions'].keys())[i]] for i in range(len(state['legal_actions']))}
return self.step(state), info