-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTrainClass.py
324 lines (272 loc) · 15.4 KB
/
TrainClass.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import tensorflow as tf
import os
import tqdm
from tensorflow.python import debug as tf_debug
from datetime import datetime
class Train:
def __init__(self, path_to_train_dataset,
path_to_validation_dataset,
batch_size=10, validation_batch_size=500, num_epochs=10, num_classes=2,
learning_rate=0.0001, regularization=0.01, enable_debug_mode=False,
enable_regularization=False, weights_init=tf.initializers.random_normal,
dropout_keep_prob=0.5, enable_dropout=True,
checkpoint_dir='/home/yurii/Documents/vad_research/vad_research/checkpoints',
events_log_dir='/home/yurii/Documents/vad_research/vad_research/events',
model_name="my_model",
train_valid_freq=50,
use_just_amplitude_spec=False, num_train_examples=None, num_validation_examples=None):
self.path_to_train_dataset = path_to_train_dataset
self.path_to_validation_dataset = path_to_validation_dataset
self.checkpoint_dir = checkpoint_dir
self.events_log_dir = events_log_dir
self.model_name = model_name
self.just_ampl = use_just_amplitude_spec
self.check_paths()
self.train_file = self.collect_tfrecords_file(self.path_to_train_dataset)
self.validation_file = self.collect_tfrecords_file(self.path_to_validation_dataset)
self.enable_debug_mode = enable_debug_mode
self.validation_batch_size = validation_batch_size
self.batch_size_const = batch_size
self.num_epochs = num_epochs
self.n_classes = num_classes
self.learning_rate = learning_rate
self.enable_regularization = enable_regularization
self.regularization = regularization
self.weights_initializer = weights_init
self.enable_dropout = enable_dropout
self.keep_prob = dropout_keep_prob
self.train_valid_freq = train_valid_freq
self.num_train_batches = num_train_examples // self.batch_size_const
self.num_validation_batches = num_validation_examples // self.validation_batch_size
# need it to run sessions in the loop
tf.reset_default_graph()
self.is_training = tf.placeholder(tf.bool)
def check_paths(self):
if not os.path.isdir(self.path_to_train_dataset):
raise FileExistsError("Train path: {} does not exist!".format(self.path_to_train_dataset))
if not os.path.isdir(self.path_to_validation_dataset):
raise FileExistsError("Validation path: {} does not exist!".format(self.path_to_train_dataset))
if not os.path.isdir(self.checkpoint_dir):
try:
os.makedirs(self.checkpoint_dir)
except Exception as e:
print(e)
print('Directory for checkpoints was made: {}'.format(self.checkpoint_dir))
if not os.path.isdir(self.events_log_dir + '/train' + "/" + self.model_name):
try:
os.makedirs(self.events_log_dir + '/train' + "/" + self.model_name)
except Exception as e:
print(e)
print('Directory for train events logging was made: {}'.format(self.checkpoint_dir + '/train'))
try:
os.makedirs(self.events_log_dir + '/validation' + "/" + self.model_name)
except Exception as e:
print(e)
print('Directory for validation events logging was made: {}'.format(self.checkpoint_dir + '/validation'))
if not os.path.isdir(self.events_log_dir + '/train'):
try:
os.makedirs(self.events_log_dir + '/train')
except Exception as e:
print(e)
print('Directory for train events logging was made: {}'.format(self.checkpoint_dir + '/train'))
if not os.path.isdir(self.events_log_dir + '/validation'):
try:
os.makedirs(self.events_log_dir + '/validation')
except Exception as e:
print(e)
print('Directory for validation events logging was made: {}'.format(self.checkpoint_dir + '/validation'))
@staticmethod
def collect_h5_file(path):
for root, dirs, files in os.walk(path):
for file in files:
if file.endswith(".hdf5"):
return os.path.join(root, file)
@staticmethod
def collect_tfrecords_file(path):
for root, dirs, files in os.walk(path):
for file in files:
if file.endswith(".tfrecords"):
return os.path.join(root, file)
@staticmethod
def count_number_of_examples(tfrecords_file):
c = 0
for _ in tf.python_io.tf_record_iterator(tfrecords_file):
c += 1
return c
def close_files(self):
self.train_file.close()
self.validation_file.close()
def _read_py_function(self, example):
feature = {"label": tf.FixedLenFeature([], tf.int64),
"spectrogram": tf.FixedLenFeature([], tf.string)}
# Decode the record read by the reader
features = tf.parse_single_example(example, features=feature)
# Convert the image data from string back to the numbers
image = tf.decode_raw(features["spectrogram"], tf.float32)
# Cast label data into int32
label = tf.cast(features["label"], tf.int32)
label_rev = label - 1
# Reshape image data into the original shape
image = tf.reshape(image, [21, 256, 2])
if self.just_ampl:
image = image[:, :, 0]
return image, tf.stack([label, tf.abs(label_rev)], axis=0)
def build_datasets(self):
train_dataset = tf.data.TFRecordDataset([self.train_file])\
.map(self._read_py_function)\
.batch(self.batch_size_const)\
.prefetch(self.batch_size_const * 2) \
.repeat()
train_iter = train_dataset.make_one_shot_iterator()
validation_dataset = tf.data.TFRecordDataset([self.validation_file]) \
.map(self._read_py_function) \
.batch(self.validation_batch_size) \
.prefetch(self.validation_batch_size * 2) \
.cache() \
.repeat()
validation_iter = validation_dataset.make_one_shot_iterator()
return train_dataset, train_iter, validation_dataset, validation_iter
@staticmethod
def model_architecture(x_reshaped, weights_initializer, regularizer, enable_dropout,
keep_prob, is_training, n_classes):
# Convolution Layer with 50 filters and a kernel size of 5
conv1 = tf.layers.conv2d(x_reshaped, filters=32, kernel_size=[5, 5], activation=tf.nn.relu, name='conv1',
kernel_initializer=weights_initializer,
kernel_regularizer=regularizer)
# Max Pooling (down-sampling) with strides of 2 and kernel size of 2
conv1 = tf.layers.max_pooling2d(conv1, 2, 2)
# Convolution Layer with 50 filters and a kernel size of 5
conv2 = tf.layers.conv2d(conv1, filters=50, kernel_size=[5, 5], activation=tf.nn.relu, name='conv2',
kernel_initializer=weights_initializer,
kernel_regularizer=regularizer)
# Max Pooling (down-sampling) with strides of 2 and kernel size of 2
conv2 = tf.layers.max_pooling2d(conv2, 2, 2)
# Flatten the data to a 1-D vector for the fully connected layer
fc1 = tf.contrib.layers.flatten(conv2)
fc1 = tf.contrib.layers.fully_connected(fc1, num_outputs=500,
biases_initializer=tf.contrib.layers.xavier_initializer(),
weights_initializer=weights_initializer,
weights_regularizer=regularizer,
activation_fn=tf.nn.relu)
# Fully connected layer (in tf contrib folder for now)
# = tf.layers.dense(fc1, 1024, activation=tf.nn.relu, name='fc1_activ')
# Output layer, class prediction
# out = tf.layers.dense(fc1, self.n_classes, name='out')
# Let's add dropout here
if enable_dropout:
drop_out = tf.contrib.layers.dropout(fc1, keep_prob=keep_prob, is_training=is_training)
else:
drop_out = fc1
# One more FC layer
out = tf.contrib.layers.fully_connected(drop_out, num_outputs=n_classes,
biases_initializer=tf.contrib.layers.xavier_initializer(),
weights_initializer=weights_initializer,
weights_regularizer=regularizer,
activation_fn=None)
return out
def build_classifier(self, input_size, train_iter, validation_iter):
x, y = tf.cond(tf.equal(self.is_training, tf.constant(True)),
lambda: train_iter.get_next(),
lambda: validation_iter.get_next())
with tf.name_scope('inputs'):
x_reshaped = tf.reshape(x, input_size, name='input_tensor')
y_reshaped = tf.reshape(y, [-1, 2], name="labels")
# Regularization:
if self.enable_regularization:
regularizer = tf.contrib.layers.l2_regularizer(scale=self.regularization)
else:
regularizer = None
# we need static method with model architecture cause in this case we can use this graph from Evaluator class
out = self.model_architecture(x_reshaped, self.weights_initializer, regularizer, self.enable_dropout,
self.keep_prob, self.is_training, self.n_classes)
# Predictions
# y_pred = tf.argmax(out, axis=1)
# y_pred = tf.expand_dims(y_pred, 0)
pred_probas = tf.nn.softmax(out)
logits_out_layer = tf.layers.dense(inputs=out, units=self.n_classes)
# Define loss and optimizer
with tf.name_scope('loss'):
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(
logits=logits_out_layer, labels=tf.cast(y_reshaped, dtype=tf.int32)), name='loss')
# loss = tf.reduce_mean(tf.losses.huber_loss(tf.cast(self.y, dtype=tf.int32), pred_probas), name='loss')
if self.enable_regularization:
reg_variables = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
reg_term = tf.contrib.layers.apply_regularization(regularizer, reg_variables)
loss += reg_term
tf.summary.scalar('loss', loss)
with tf.name_scope('accuracy'):
correct_prediction = tf.equal(tf.argmax(out, 1), tf.argmax(y_reshaped, 1), name='correct_prediction')
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32), name='accuracy')
tf.summary.scalar('accuracy', accuracy)
optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate, name='adam_opt')
# train_op = optimizer.minimize(loss, global_step=tf.train.get_global_step(), name='opt_min')
train_op = optimizer.minimize(loss, name='opt_min')
writer = tf.summary.FileWriter('./events')
writer.add_graph(tf.get_default_graph())
merged = tf.summary.merge_all() # merge accuracy & loss
train_writer = tf.summary.FileWriter(self.events_log_dir + '/train' + "/" + self.model_name,
filename_suffix=self.model_name)
validation_writer = tf.summary.FileWriter(self.events_log_dir + '/validation' + "/" + self.model_name,
filename_suffix=self.model_name)
train_writer.add_graph(tf.get_default_graph())
return train_op, loss, accuracy, merged, train_writer, validation_writer, pred_probas
def validation_loop(self, sess, loss, accuracy, merged, epoch, validation_writer):
num_correct = 0
sum_loss = 0
for _ in tqdm.tqdm(range(self.num_validation_batches)):
loss_v, acc_v, summary = sess.run([loss, accuracy, merged],
feed_dict={self.is_training: False})
num_correct += acc_v * self.validation_batch_size
sum_loss += loss_v
# validation_writer.add_summary(summary, epoch * num_train_batches + batch)
validation_writer.add_summary(summary, (epoch + 1) * self.num_train_batches)
validation_loss = sum_loss / self.num_validation_batches
validation_accuracy = num_correct / (self.validation_batch_size * self.num_validation_batches)
print('Validation Loss: {:6e}'.format(validation_loss))
print('Validation Accuracy: {:.3f}'.format(validation_accuracy))
return sess, validation_loss
def run_training(self, **kwargs):
if self.just_ampl:
size_param = [-1, 21, 256, 1]
else:
size_param = [-1, 21, 256, 2]
input_size = kwargs.get('input_size', size_param)
_, train_iter, _, validation_iter = self.build_datasets()
train_op, loss, accuracy,\
merged, train_writer, validation_writer, _ = self.build_classifier(input_size, train_iter, validation_iter)
print('Configuring session...\n')
config = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)
# config.gpu_options.allow_growth = True
# config.gpu_options.per_process_gpu_memory_fraction = 0.95
# tf.logging.set_verbosity(tf.logging.ERROR)
with tf.Session(config=config) as sess:
if self.enable_debug_mode:
sess = tf_debug.LocalCLIDebugWrapperSession(sess) # debugging mode
sess.run(tf.global_variables_initializer())
# init saver
saver = tf.train.Saver(max_to_keep=1000)
print("Validation before training:\n")
sess, validation_loss = self.validation_loop(sess, loss, accuracy, merged,
-1, validation_writer)
print('Training...\n')
for epoch in range(self.num_epochs):
print("Epoch {}".format(epoch))
tot_loss = 0
for batch in tqdm.tqdm(range(self.num_train_batches)):
try:
if batch % self.train_valid_freq == 0:
_, loss_value, summary = sess.run([train_op, loss, merged],
feed_dict={self.is_training: True})
train_writer.add_summary(summary, epoch * self.num_train_batches + batch)
tot_loss += loss_value
else:
_ = sess.run(train_op, feed_dict={self.is_training: True})
except tf.errors.OutOfRangeError:
break
sess, validation_loss = self.validation_loop(sess, loss, accuracy, merged,
epoch, validation_writer)
print("Epoch: {}, Train Loss: {:.6e}, Validation Loss: {:.3f}\n"
.format(epoch, tot_loss / self.num_train_batches, validation_loss))
saver.save(sess, self.checkpoint_dir + "/" + self.model_name + "_epoch_" + str(epoch) + ".ckpt")
# self.close_files()
print('The end of the training at {}'.format(str(datetime.now())))