-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexp-trace.py
158 lines (133 loc) · 4.88 KB
/
exp-trace.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
"""
[Title] experiment-trace.py
[Usage] This is a file to calculate the hessian traces.
"""
# from pyhessian import hessian
import pyhessian
from helper import utils, pruner
from pathlib import Path
from torch import nn
from PIL import Image
from functools import reduce
from abc import ABC, abstractmethod
from torch.utils.data import DataLoader
from torchvision.datasets import CIFAR10
from loader.loader_cifar10 import CIFAR10Loader
from loader.loader_cifar100 import CIFAR100Loader
from network.res_net import ResNet
from collections import OrderedDict
import math
import time
import torch
import joblib
import logging
import torch.nn
import argparse
import numpy as np
import seaborn as sea
import torch.optim as optim
import matplotlib.pyplot as plt
import torch.nn.functional as F
import torch.nn.utils.prune as torch_prune
import torchvision.transforms as transforms
# ##################################################################
# 0. Set the arguments
# ##################################################################
parser = argparse.ArgumentParser()
parser.add_argument('-pt', '--path', type=str, default='./final_path',
help='The path to get results.')
parser.add_argument('-pi', '--prune_indicator', type=int, default=1,
help='1 if prune, else 0.')
parser.add_argument('-pr', '--prune_ratio', type=float, default=0.9,
help='The ratio for sparse training')
# Better to leave them as default
parser.add_argument('-ul', '--use_loader', type=str, default='train',
help='The loader to use in evaluating the fisher.',
choices=['train', 'test', 'clean', 'noisy'])
parser.add_argument('-dv', '--device', type=str, default='cuda',
help='Choose from cpu, cuda, and tpu.')
parser.add_argument('-bs', '--batch_size', type=int, default=512,
help='The batch size for training.')
p = parser.parse_args()
# ##################################################################
# 0. Define Global Variables
# ##################################################################
final_path = Path(p.path)
prune_indicator = p.prune_indicator
batch_size = p.batch_size
device = p.device
state_dict_path = final_path / 'model.tar'
log_path = final_path / 'hessian.log'
prune_ratio = 0.9 # Just a placeholder
# ##################################################################
# 1. Prepartions
# ##################################################################
# Set logger
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger()
logger.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
file_handler = logging.FileHandler(log_path)
file_handler.setLevel(logging.INFO)
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
logger.info(state_dict_path)
# Set neccessities
device = torch.device(device)
criterion = nn.CrossEntropyLoss()
# Set the dataset
dataset = CIFAR100Loader()
train_loader, test_loader, _ = dataset.loaders(batch_size=batch_size,
shuffle_train=False,
shuffle_test=False)
# Create the function to set the network
def set_network(prune_indicator,
prune_ratio,
state_dict_path,
device):
"""
Set a network.
"""
# Load the dict
state_dict = torch.load(state_dict_path, map_location=device)
# Set the network
net = ResNet(out_dim=100).to(device=device)
# Prune the network if needed
if prune_indicator:
try:
pruner.global_prune(net, 'l1', prune_ratio, False)
net = utils.load_state_dict_(net, state_dict)
except:
pruner.global_prune(net, 'l1', prune_ratio, True)
net = utils.load_state_dict_(net, state_dict)
else:
net = utils.load_state_dict_(net, state_dict)
# Load the dict to net
return net
# ##################################################################
# 1. Calculate the Hessian
# ##################################################################
# Set network
net = set_network(prune_indicator, prune_ratio, state_dict_path, device)
# Set the loader
if p.use_loader == 'train':
data_loader = train_loader
elif p.use_loader == 'test':
data_loader = test_loader
else:
data_loader = train_loader
# Get the data from the loader (we use one random batch)
for data_ in data_loader:
# Get the data
inputs, targets, _ = data_
# Move to the device
inputs = inputs.to(device=device)
targets = targets.to(device=device)
break
# Get logging
logger.info(f'Getting hessian for batch size as {batch_size}...')
# Calculate the trace of hessian
hessian_comp = pyhessian.hessian(net, criterion, data=(inputs, targets), cuda=True)
trace = hessian_comp.trace()
logger.info(f'Trace List: {trace}')
logger.info(f'Trace mean: {np.mean(trace)}\n')