-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataCollection.py
58 lines (43 loc) · 1.85 KB
/
dataCollection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import cv2
import HandTrackModule as htm
import numpy as np
import math
import time
cap = cv2.VideoCapture(0)
detector = htm.handDetection(maxHands=1) #working with 1 hand
offset = 20
folder = "Data/Y"
counter = 0
while True:
success, img = cap.read()
hands, img = detector.findHands(img)
if hands:
hand = hands[0]
x,y,w,h = hand['bbox']
imgWhite = np.ones((300,300,3), np.uint8)*255 #300 * 200 matrix of a white image
#startin height(y), ending height(y+h). starting width(x), ending width(x+h)
imgCrop = img[y-offset:y+h+offset, x-offset:x+w+offset]
aspectRatio = h/w
if aspectRatio > 1:
k = 300 / h #stretch height to image size
widthCalculated = math.ceil(k * w)
imgResize = cv2.resize(imgCrop, (widthCalculated, 300))
imgResizeShape = imgResize.shape
widthGap = math.ceil((300 - widthCalculated )/ 2)
imgWhite[:, widthGap:widthCalculated+widthGap] = imgResize #width + gap to center the image, will generate cropped image with white background
else:
k = 300 / w #stretch width to image size
heightCalculated = math.ceil(k * h)
imgResize = cv2.resize(imgCrop, (300, heightCalculated))
imgResizeShape = imgResize.shape
heightGap = math.ceil((300 - heightCalculated )/ 2)
imgWhite[heightGap:heightCalculated+heightGap, :] = imgResize #width + gap to center the image, will generate cropped image with white background
cv2.imshow("ImageCrop", imgCrop)
cv2.imshow("ImageWhite", imgWhite)
cv2.waitKey(1)
cv2.imshow("Image", img)
key = cv2.waitKey(1)
if key == ord("s"): #save image to folder the 's' key is clicked
counter += 1
cv2.imwrite(f'{folder}/Image_{time.time()}.jpg', imgWhite)
print(counter)