-
Notifications
You must be signed in to change notification settings - Fork 97
/
Copy pathtrain.py
104 lines (82 loc) · 3.09 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
# -*- coding: utf-8 -*-
"""
Created on Sun Jan 5 13:57:15 2020
@author: Lim
"""
import os
import sys
import torch
import numpy as np
from Loss import CtdetLoss
from torch.utils.data import DataLoader
from dataset import ctDataset
sys.path.append(r'./backbone')
#from resnet import ResNet
#from resnet_dcn import ResNet
#from dlanet import DlaNet
from dlanet_dcn import DlaNet
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
use_gpu = torch.cuda.is_available()
#model = ResNet(34)
model = DlaNet(34)
print('cuda', torch.cuda.current_device(), torch.cuda.device_count())
loss_weight={'hm_weight':1,'wh_weight':0.1,'ang_weight':0.1,'reg_weight':0.1}
criterion = CtdetLoss(loss_weight)
device = torch.device("cuda")
if use_gpu:
model.cuda()
model.train()
learning_rate = 1.25e-4
num_epochs = 150
# different learning rate
params=[]
params_dict = dict(model.named_parameters())
for key,value in params_dict.items():
params += [{'params':[value],'lr':learning_rate}]
#optimizer = torch.optim.SGD(params, lr=learning_rate, momentum=0.9, weight_decay=5e-4)
optimizer = torch.optim.Adam(params, lr=learning_rate, weight_decay=1e-4)
train_dataset = ctDataset(split='train')
train_loader = DataLoader(train_dataset,batch_size=2,shuffle=False,num_workers=0) # num_workers是加载数据(batch)的线程数目
test_dataset = ctDataset(split='val')
test_loader = DataLoader(test_dataset,batch_size=4,shuffle=False,num_workers=0)
print('the dataset has %d images' % (len(train_dataset)))
num_iter = 0
best_test_loss = np.inf
for epoch in range(num_epochs):
model.train()
if epoch == 90:
learning_rate= learning_rate * 0.1
if epoch == 120:
learning_rate= learning_rate * (0.1 ** 2)
for param_group in optimizer.param_groups:
param_group['lr'] = learning_rate
total_loss = 0.
for i, sample in enumerate(train_loader):
for k in sample:
sample[k] = sample[k].to(device=device, non_blocking=True)
pred = model(sample['input'])
loss = criterion(pred, sample)
total_loss += loss.item()
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (i+1) % 5 == 0:
print ('Epoch [%d/%d], Iter [%d/%d] Loss: %.4f, average_loss: %.4f'
%(epoch+1, num_epochs, i+1, len(train_loader), loss.data, total_loss / (i+1)))
num_iter += 1
#validation
validation_loss = 0.0
model.eval()
for i, sample in enumerate(test_loader):
if use_gpu:
for k in sample:
sample[k] = sample[k].to(device=device, non_blocking=True)
pred = model(sample['input'])
loss = criterion(pred, sample)
validation_loss += loss.item()
validation_loss /= len(test_loader)
if best_test_loss > validation_loss:
best_test_loss = validation_loss
print('get best test loss %.5f' % best_test_loss)
torch.save(model.state_dict(),'best.pth')
torch.save(model.state_dict(),'last.pth')