-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_helper.py
220 lines (180 loc) · 8.46 KB
/
train_helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import os, time
import torch as t
import torch.nn as nn
import utils.converter as converter
from torch.nn import functional as F
from collections import namedtuple
from torchnet.meter import ConfusionMeter, AverageValueMeter
from utils.config import config
from utils.visualizer import Visualizer
from models.utils.AnchorTargetLayer import AnchorTargetLayer
from models.utils.ProposalTargetLayer import ProposalTargetLayer
LossTuple = namedtuple('LossTuple',
['rpn_reg_loss',
'rpn_cls_loss',
'roi_reg_loss',
'roi_cls_loss',
'total_loss'])
class TrainHelper(nn.Module):
def __init__(self, faster_rcnn):
super().__init__()
self.faster_rcnn = faster_rcnn
self.rpn_sigma = config.rpn_sigma
self.roi_sigma = config.roi_sigma
self.anchor_target_layer = AnchorTargetLayer()
self.proposal_target_layer = ProposalTargetLayer()
self.reg_normalize_mean = faster_rcnn.reg_normalize_mean
self.reg_normalize_std = faster_rcnn.reg_normalize_std
self.optimizer = self.faster_rcnn.get_optimizer()
self.vis = Visualizer(env=config.env)
self.rpn_cm = ConfusionMeter(2)
self.rcnn_cm = ConfusionMeter(config.n_class + 1)
self.meters = {k: AverageValueMeter() for k in LossTuple._fields}
def forward(self, img, gt_bbox, gt_label, scale):
'''
:param img: (torch.autograd.Variable) a batch of images
:param gt_bbox: (torch.autograd.Variable) a batch of bbox of shape (B, K, 4)
:param gt_label: (torch.autograd.Variable) a batch of labels of shape (B, K)
background is excluded
:param scale: (float) scale factor during preprocess
:return: namedtuple of 5 losses
'''
assert gt_bbox.shape[0] == 1, 'currently only support batch size of 1.'
_, _, h, w = img.shape
img_size = (h, w)
feat = self.faster_rcnn.extractor(img)
# >>>>> RPN <<<<<<
# RPN returns (B, f_h * f_w * n_a, 2), (B, f_h * f_w * n_a, 4),
# (N_pos_nms, 4), (N_p_n, 4), (f_h * f_w * n_a, 4), N_pos_nms = n_sample
rpn_cls, rpn_reg, rois, roi_id, anchor = self.faster_rcnn.RPN(feat, img_size, scale)
gt_bbox = gt_bbox[0] # (K, 4)
gt_label = gt_label[0] # (K, )
rpn_cls = rpn_cls[0] # (n_anchor, 2)
rpn_reg = rpn_reg[0] # (n_anchor, 4)
roi = rois # (N_p_n, 4)
# ------------------ RPN loss -------------------
# label identifies whether the rpn output is valid or not
# label: invalid -> -1; negative(bg) -> 0; positive(fg) -> 1
# >>>>> ATL <<<<<<
# anchor target layer returns (N, 4), (N, ), xp.ndarray
# where atl_t_star is the id of gt assigned to that proposal
atl_t_star, atl_v_label = self.anchor_target_layer(
converter.to_numpy(gt_bbox),
anchor,
img_size,
)
atl_v_label = converter.to_tensor(atl_v_label).long() # already on cuda
atl_t_star = converter.to_tensor(atl_t_star) # already on cuda
rpn_reg_loss = _fast_rcnn_reg_loss(
rpn_reg,
atl_t_star,
atl_v_label.data,
self.rpn_sigma,
)
rpn_cls_loss = F.cross_entropy(rpn_cls, atl_v_label, ignore_index=-1)
gt_rpn_valid_label = atl_v_label[atl_v_label > -1].cpu()
rpn_valid_cls = rpn_cls[atl_v_label > -1].cpu()
self.rpn_cm.add(converter.to_tensor(rpn_valid_cls, False),
gt_rpn_valid_label.data.long())
# ------------------ ROI loss (RCNN loss) --------------------
# >>>>> PTL <<<<<<
# proposal target layer returns (n_sample, 4), (n_sample, 4), (n_sample, ), xp.ndarray
# label here is actual target label(gt label), not validity denotation(-1, 0, 1)
ptl_sample_roi, ptl_t_star, ptl_gt_label = self.proposal_target_layer(
roi,
converter.to_numpy(gt_bbox),
converter.to_numpy(gt_label),
self.reg_normalize_mean,
self.reg_normalize_std,
)
ptl_batch_idx = t.zeros(len(ptl_sample_roi)) # all samples are batch 0
# >>>>> RCNN <<<<<
# RCNN returns (B * n_sample, n_class), (B * n_sample, n_class * 4), torch.Tensor
# where B is 1 as only support for batch size of 1
rcnn_cls, rcnn_reg = self.faster_rcnn.RCNN(feat, ptl_sample_roi, ptl_batch_idx)
n_sample = rcnn_cls.shape[0]
rcnn_reg = rcnn_reg.view(n_sample, -1, 4) # (n_sample, n_class, 4)
# as RCNN is fed with output of proposal target layer(PTL),
# use ptl_gt_label to choose the corresponding reg bbox from all classes
# (n_sample, 1, 4)
sample_rcnn_reg = rcnn_reg[t.arange(0, n_sample).long().cuda(),
converter.to_tensor(ptl_gt_label).long()]
# it doesn't matter to give it another name as they share the same memory
# use output reg of PTL as gt to train RCNN
rcnn_gt_label = converter.to_tensor(ptl_gt_label).long() # (n_sample, )
rcnn_gt_reg = converter.to_tensor(ptl_t_star) # (n_sample, 4)
rcnn_reg_loss = _fast_rcnn_reg_loss(
sample_rcnn_reg.contiguous(),
rcnn_gt_reg,
rcnn_gt_label,
self.roi_sigma,
)
rcnn_cls_loss = nn.CrossEntropyLoss()(rcnn_cls, rcnn_gt_label)
self.rcnn_cm.add(converter.to_tensor(rcnn_cls, False),
rcnn_gt_label.data.long())
losses = [rpn_cls_loss, rpn_reg_loss, rcnn_cls_loss, rcnn_reg_loss]
losses = losses + [sum(losses)]
return LossTuple(*losses)
def train_step(self, img, bbox, label, scale):
self.optimizer.zero_grad()
losses = self.forward(img, bbox, label, scale)
losses.total_loss.backward()
self.optimizer.step()
self.update_meters(losses)
return losses
def save(self, save_optimizer=False, save_path=None, **kwargs):
save_dict = dict()
save_dict['model'] = self.faster_rcnn.state_dict()
save_dict['config'] = config._state_dict()
save_dict['miscellaneous'] = kwargs
save_dict['vis_info'] = self.vis.state_dict()
if save_optimizer:
save_dict['optimizer'] = self.optimizer.state_dict()
if save_path is None:
time_ = time.strftime('%y%m%d%H%M')
save_path = 'checkpoints/faster_rcnn_%s' % time_
for k, v in kwargs.items():
save_path += '_%s' % v
save_dir = os.path.dirname(save_path)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
t.save(save_dict, save_path)
self.vis.save([self.vis.env])
return save_path
def load(self, path, load_optimizer=True, parse_config=False):
state_dict = t.load(path)
if 'model' in state_dict:
self.faster_rcnn.load_state_dict(state_dict['model'])
else:
self.faster_rcnn.load_state_dict(state_dict)
if parse_config:
config._parse(state_dict['config'])
if 'optimizer' in state_dict and load_optimizer:
self.optimizer.load_state_dict(state_dict['optimizer'])
return self
def update_meters(self, losses):
loss_dict = {k: converter.to_tensor(v) for k, v in losses._asdict().items()}
for key, meter in self.meters.items():
meter.add(loss_dict[key].cpu())
def reset_meters(self):
for key, meter in self.meters.items():
meter.reset()
self.rcnn_cm.reset()
self.rpn_cm.reset()
def get_meter_data(self):
return {k: v.value()[0] for k, v in self.meters.items()}
def _smooth_l1_loss(pred_t, gt_t, in_weight, sigma):
sigma2 = sigma ** 2
diff = in_weight * (pred_t - gt_t)
abs_diff = diff.abs()
flag = (abs_diff.data < (1.0 / sigma2)).float()
y = (flag * (sigma2 / 2.0) * (diff ** 2) + (1 - flag) * (abs_diff - 0.5 / sigma2))
return y.sum()
def _fast_rcnn_reg_loss(pred_reg, gt_reg, label, sigma):
# as v_label and gt_label all set bg to 0, both types of label are ok
in_weight = t.zeros(gt_reg.shape).cuda() # (n_sample, 4)
# make those rows of positive rois 1 and others 0
in_weight[(label > 0).view(-1, 1).expand_as(in_weight).cuda()] = 1
reg_loss = _smooth_l1_loss(pred_reg, gt_reg, in_weight.detach(), sigma)
reg_loss /= ((label >= 0).sum().float())
return reg_loss