forked from WongKinYiu/PyTorch_YOLOv4
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathactivations.py
63 lines (47 loc) · 1.62 KB
/
activations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn as nn
# Swish ------------------------------------------------------------------------
class SwishImplementation(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
ctx.save_for_backward(x)
return x * torch.sigmoid(x)
@staticmethod
def backward(ctx, grad_output):
x = ctx.saved_tensors[0]
sx = torch.sigmoid(x)
return grad_output * (sx * (1 + x * (1 - sx)))
class MemoryEfficientSwish(nn.Module):
@staticmethod
def forward(x):
return SwishImplementation.apply(x)
class HardSwish(nn.Module): # https://arxiv.org/pdf/1905.02244.pdf
@staticmethod
def forward(x):
return x * F.hardtanh(x + 3, 0., 6., True) / 6.
class Swish(nn.Module):
@staticmethod
def forward(x):
return x * torch.sigmoid(x)
# Mish ------------------------------------------------------------------------
class MishImplementation(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
ctx.save_for_backward(x)
return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x)))
@staticmethod
def backward(ctx, grad_output):
x = ctx.saved_tensors[0]
sx = torch.sigmoid(x)
fx = F.softplus(x).tanh()
return grad_output * (fx + x * sx * (1 - fx * fx))
class MemoryEfficientMish(nn.Module):
@staticmethod
def forward(x):
return MishImplementation.apply(x)
class Mish(nn.Module): # https://github.com/digantamisra98/Mish
@staticmethod
def forward(x):
return x * F.softplus(x).tanh()