forked from Lornatang/CRNN-PyTorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
101 lines (80 loc) · 3.76 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
# Copyright 2022 Dakewe Biotech Corporation. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import torch
from torch import nn
__all__ = [
"CRNN"
]
class _BidirectionalLSTM(nn.Module):
def __init__(self, inputs_size: int, hidden_size: int, output_size: int):
super(_BidirectionalLSTM, self).__init__()
self.lstm = nn.LSTM(inputs_size, hidden_size, bidirectional=True)
self.linear = nn.Linear(hidden_size * 2, output_size)
def forward(self, x: torch.Tensor) -> torch.Tensor:
recurrent, _ = self.lstm(x)
sequence_length, batch_size, inputs_size = recurrent.size()
sequence_length2 = recurrent.view(sequence_length * batch_size, inputs_size)
out = self.linear(sequence_length2) # [sequence_length * batch_size, output_size]
out = out.view(sequence_length, batch_size, -1) # [sequence_length, batch_size, output_size]
return out
class CRNN(nn.Module):
def __init__(self, num_classes: int):
super(CRNN, self).__init__()
self.convolutional_layers = nn.Sequential(
nn.Conv2d(1, 64, (3, 3), (1, 1), (1, 1), bias=True),
nn.ReLU(True),
nn.MaxPool2d((2, 2), (2, 2)), # image size: 16 * 64
nn.Conv2d(64, 128, (3, 3), (1, 1), (1, 1), bias=True),
nn.ReLU(True),
nn.MaxPool2d((2, 2), (2, 2)), # image size: 8 * 32
nn.Conv2d(128, 256, (3, 3), (1, 1), (1, 1), bias=False),
nn.BatchNorm2d(256),
nn.ReLU(True),
nn.Conv2d(256, 256, (3, 3), (1, 1), (1, 1), bias=True),
nn.ReLU(True),
nn.MaxPool2d((2, 2), (2, 1), (0, 1)), # image size: 4 x 16
nn.Conv2d(256, 512, (3, 3), (1, 1), (1, 1), bias=False),
nn.BatchNorm2d(512),
nn.ReLU(True),
nn.Conv2d(512, 512, (3, 3), (1, 1), (1, 1), bias=True),
nn.ReLU(True),
nn.MaxPool2d((2, 2), (2, 1), (0, 1)), # image size: 2 x 16
nn.Conv2d(512, 512, (2, 2), (1, 1), (0, 0), bias=False),
nn.BatchNorm2d(512),
nn.ReLU(True), # image size: 1 x 16
)
self.recurrent_layers = nn.Sequential(
_BidirectionalLSTM(512, 256, 256),
_BidirectionalLSTM(256, 256, num_classes),
)
# Initialize model weights
self._initialize_weights()
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self._forward_impl(x)
# Support torch.script function
def _forward_impl(self, x: torch.Tensor) -> torch.Tensor:
# Feature sequence
features = self.convolutional_layers(x) # [b, c, h, w]
features = features.squeeze(2) # [b, c, w]
features = features.permute(2, 0, 1) # [w, b, c]
# Deep bidirectional LSTM
out = self.recurrent_layers(features)
return out
def _initialize_weights(self) -> None:
for module in self.modules():
if isinstance(module, nn.Conv2d):
nn.init.kaiming_normal_(module.weight, mode="fan_in", nonlinearity="relu")
elif isinstance(module, nn.BatchNorm2d):
nn.init.constant_(module.weight, 1)
nn.init.constant_(module.bias, 0)