forked from layumi/Person_reID_baseline_pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathODFA.py
89 lines (78 loc) · 3.27 KB
/
ODFA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import torch
from torch.autograd import Variable
from copy import deepcopy
import torch.nn as nn
import numpy as np
from PIL import Image
from torchvision import transforms
# Online Adversarial Defense Trainnig via ODFA.
# https://github.com/layumi/U_turn/blob/master/README.md
def ODFA(model, img, rate = 16):
model = deepcopy(model)
model.eval()
model.classifier.return_f = False
n, c, h, w = img.size()
inputs = Variable(img.cuda(), requires_grad=True)
# ---------------------attack------------------
# The input has been whiten.
# So when we recover, we need to use a alpha
alpha = 1.0 / (0.226 * 255.0)
inputs_copy = Variable(inputs.data, requires_grad = False)
diff = torch.FloatTensor(inputs.shape).zero_()
diff = Variable(diff.cuda(), requires_grad = False)
model.model.fc = nn.Sequential() #nn.Sequential(*L2norm)
model.classifier.classifier = nn.Sequential()
#model.classifier = nn.Sequential() PCB
outputs = model(inputs)
fnorm = torch.norm(outputs, p=2, dim=1, keepdim=True)
outputs = outputs.div(fnorm.expand_as(outputs))
outputs = outputs.view(outputs.size(0), -1)
#print(outputs.shape)
#feature_dim = outputs.shape[1]
#batch_size = inputs.shape[0]
#zero_feature = torch.zeros(batch_size,feature_dim)
target = Variable(-outputs.data, requires_grad=False)
criterion2 = nn.MSELoss()
max_iter = round(min(1.25 * rate, rate+4))
for iter in range( max_iter ):
loss2 = criterion2(outputs, target)
loss2.backward()
diff += torch.sign(inputs.grad)
mask_diff = diff.abs() > rate
diff[mask_diff] = rate * torch.sign(diff[mask_diff])
inputs = inputs_copy - diff * 1.0 * alpha
inputs = clip(inputs,n)
inputs = Variable(inputs.data, requires_grad=True)
if iter == max_iter-1: break
outputs = model(inputs)
fnorm = torch.norm(outputs, p=2, dim=1, keepdim=True)
outputs = outputs.div(fnorm.expand_as(outputs))
outputs = outputs.view(outputs.size(0), -1)
return inputs.detach()
def clip(inputs, batch_size):
inputs = inputs.data
for i in range(batch_size):
inputs[i] = clip_single(inputs[i])
inputs = Variable(inputs.cuda())
return inputs
#######################################################################
# Creat Up bound and low bound
# Clip
data_transforms = transforms.Compose([
transforms.Resize((256,128), interpolation=3),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
zeros = np.zeros((256,128,3),dtype=np.uint8)
zeros = Image.fromarray(zeros)
zeros = data_transforms(zeros)
ones = 255*np.ones((256,128,3), dtype=np.uint8)
ones = Image.fromarray(ones)
ones = data_transforms(ones)
zeros,ones = zeros.cuda(),ones.cuda()
def clip_single(input):
low_mask = input<zeros
up_mask = input>ones
input[low_mask] = zeros[low_mask]
input[up_mask] = ones[up_mask]
return input