forked from layumi/Person_reID_baseline_pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrandom_erasing.py
110 lines (88 loc) · 3.93 KB
/
random_erasing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
from __future__ import absolute_import
#from torchvision.transforms import *
#from PIL import Image
import random
import math
#import numpy as np
class RandomErasing(object):
""" Randomly selects a rectangle region in an image and erases its pixels.
'Random Erasing Data Augmentation' by Zhong et al.
See https://arxiv.org/pdf/1708.04896.pdf
Args:
probability: The probability that the Random Erasing operation will be performed.
sl: Minimum proportion of erased area against input image.
sh: Maximum proportion of erased area against input image.
r1: Minimum aspect ratio of erased area.
mean: Erasing value.
"""
def __init__(self, probability = 0.5, sl = 0.02, sh = 0.4, r1 = 0.3, mean=[0.4914, 0.4822, 0.4465]):
self.probability = probability
self.mean = mean
self.sl = sl
self.sh = sh
self.r1 = r1
def __call__(self, img):
if random.uniform(0, 1) > self.probability:
return img
for attempt in range(100):
area = img.size()[1] * img.size()[2]
target_area = random.uniform(self.sl, self.sh) * area
aspect_ratio = random.uniform(self.r1, 1/self.r1)
h = int(round(math.sqrt(target_area * aspect_ratio)))
w = int(round(math.sqrt(target_area / aspect_ratio)))
if w < img.size()[2] and h < img.size()[1]:
x1 = random.randint(0, img.size()[1] - h)
y1 = random.randint(0, img.size()[2] - w)
if img.size()[0] == 3:
img[0, x1:x1+h, y1:y1+w] = self.mean[0]
img[1, x1:x1+h, y1:y1+w] = self.mean[1]
img[2, x1:x1+h, y1:y1+w] = self.mean[2]
else:
img[0, x1:x1+h, y1:y1+w] = self.mean[0]
return img
return img
class RandomGrayscaleErasing(object):
""" Randomly selects a rectangle region in an image and use grayscale image
instead of its pixels.
'Local Grayscale Transfomation' by Yunpeng Gong.
See https://arxiv.org/pdf/2101.08533.pdf
Args:
probability: The probability that the Random Grayscale Erasing operation will be performed.
sl: Minimum proportion of erased area against input image.
sh: Maximum proportion of erased area against input image.
r1: Minimum aspect ratio of erased area.
"""
def __init__(self, probability: float = 0.2, sl: float = 0.02, sh: float = 0.4, r1: float = 0.3):
self.probability = probability
self.sl = sl
self.sh = sh
self.r1 = r1
def __call__(self, img):
"""
Args:
img: after ToTensor() and Normalize([...]), img's type is Tensor
"""
if random.uniform(0, 1) > self.probability:
return img
height, width = img.size()[-2], img.size()[-1]
area = height * width
for _ in range(100):
target_area = random.uniform(self.sl, self.sh) * area
aspect_ratio = random.uniform(self.r1, 1/self.r1) # height / width
h = int(round(math.sqrt(target_area * aspect_ratio)))
w = int(round(math.sqrt(target_area / aspect_ratio)))
if w < width and h < height:
# tl
x = random.randint(0, height - h)
y = random.randint(0, width - w)
# unbind channel dim
r, g, b = img.unbind(dim=-3)
# Weighted average method -> grayscale patch
l_img = (0.2989 * r + 0.587 * g + 0.114 * b).to(img.dtype)
l_img = l_img.unsqueeze(dim=-3) # rebind channel
# erasing
img[0, y:y + h, x:x + w] = l_img[0, y:y + h, x:x + w]
img[1, y:y + h, x:x + w] = l_img[0, y:y + h, x:x + w]
img[2, y:y + h, x:x + w] = l_img[0, y:y + h, x:x + w]
return img
return img