forked from r9y9/wavenet_vocoder
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocess_normalize.py
79 lines (65 loc) · 2.6 KB
/
preprocess_normalize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
# coding: utf-8
"""Perform meanvar normalization to preprocessed features.
usage: preprocess_normalize.py [options] <in_dir> <out_dir> <scaler>
options:
--inverse Inverse transform.
--num_workers=<n> Num workers.
-h, --help Show help message.
"""
from docopt import docopt
import os
from os.path import join, exists, basename, splitext
from multiprocessing import cpu_count
from tqdm import tqdm
from nnmnkwii import preprocessing as P
import numpy as np
import json
from concurrent.futures import ProcessPoolExecutor
from functools import partial
from shutil import copyfile
import joblib
from glob import glob
from itertools import zip_longest
def get_paths_by_glob(in_dir, filt):
return glob(join(in_dir, filt))
def _process_utterance(out_dir, audio_path, feat_path, scaler, inverse):
# [Optional] copy audio with the same name if exists
if audio_path is not None and exists(audio_path):
name = splitext(basename(audio_path))[0]
np.save(join(out_dir, name), np.load(audio_path), allow_pickle=False)
# [Required] apply normalization for features
assert exists(feat_path)
x = np.load(feat_path)
if inverse:
y = scaler.inverse_transform(x)
else:
y = scaler.transform(x)
assert x.dtype == y.dtype
name = splitext(basename(feat_path))[0]
np.save(join(out_dir, name), y, allow_pickle=False)
def apply_normalization_dir2dir(in_dir, out_dir, scaler, inverse, num_workers):
# NOTE: at this point, audio_paths can be empty
audio_paths = get_paths_by_glob(in_dir, "*-wave.npy")
feature_paths = get_paths_by_glob(in_dir, "*-feats.npy")
executor = ProcessPoolExecutor(max_workers=num_workers)
futures = []
for audio_path, feature_path in zip_longest(audio_paths, feature_paths):
futures.append(executor.submit(
partial(_process_utterance, out_dir, audio_path, feature_path, scaler, inverse)))
for future in tqdm(futures):
future.result()
if __name__ == "__main__":
args = docopt(__doc__)
in_dir = args["<in_dir>"]
out_dir = args["<out_dir>"]
scaler_path = args["<scaler>"]
scaler = joblib.load(scaler_path)
inverse = args["--inverse"]
num_workers = args["--num_workers"]
num_workers = cpu_count() // 2 if num_workers is None else int(num_workers)
os.makedirs(out_dir, exist_ok=True)
apply_normalization_dir2dir(in_dir, out_dir, scaler, inverse, num_workers)
# Copy meta information if exists
traintxt = join(in_dir, "train.txt")
if exists(traintxt):
copyfile(join(in_dir, "train.txt"), join(out_dir, "train.txt"))