forked from wullm/class_public
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhermite6_interpolation_csource.h
176 lines (169 loc) · 5.61 KB
/
hermite6_interpolation_csource.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
/** Hermite interpolation of order 6 for Phi, dPhi, and d2Phi. When xinterp
is sorted (increasing), computations can be reused. On the other hand,
for a randomly called value, the routine is not much slower than a
routine optimised for this case. The more sorted the vector, the faster
the execution time. For closed case, the interpolation structure only
covers [safety;pi/2-safety]. The calling routine should respect this.
if sinK and cosK are not NULL, we will also interpolate them.
*/
double ym=0, yp=0, dym=0, dyp=0, d2ym=0, d2yp=0, x, z, z2, z3, z4, z5;
double cotKm=0,cotKp=0,sinKm=0,sinKp=0, sinKm2, sinKp2;
#ifdef HERMITE_DO_PHI
double a1=0, a2=0, a3=0, a4=0, a5=0;
#endif
#ifdef HERMITE_DO_DPHI
double b1=0, b2=0, b3=0, b4=0, b5=0;
#endif
#ifdef HERMITE_DO_D2PHI
double c1=0, c2=0, c3=0, c4=0, c5=0;
double d4ym=0, d4yp=0;
#endif
#if defined (HERMITE_DO_DPHI) || defined (HERMITE_DO_D2PHI)
double d3ym = 0, d3yp=0;
#endif
double beta, beta2, *xvec, *sinK, *cotK;
double xmin, xmax, deltax, deltax2, lxlp1;
double left_border, right_border, next_border;
int K, l, j, nx, current_border_idx=0;
double *Phi_l, *dPhi_l;
int phisign = 1, dphisign = 1;
/** Set logical flags. The compiler should probably generate 2^3-1=7
different functions, according to these flags. If not, maybe I should
do it.
*/
xvec = pHIS->x;
sinK = pHIS->sinK;
cotK = pHIS->cotK;
beta = pHIS->beta;
beta2 = beta*beta;
deltax = pHIS->delta_x;
deltax2 = deltax*deltax;
K = pHIS->K;
nx = pHIS->x_size;
Phi_l = pHIS->phi+lnum*nx;
dPhi_l = pHIS->dphi+lnum*nx;
l = pHIS->l[lnum];
lxlp1 = l*(l+1.0);
xmin = xvec[0];
xmax = xvec[nx-1];
left_border = xmax;
right_border = xmin;
next_border = xmin;
for (j=0; j<nxi; j++){
x = xinterp[j];
//take advantage of periodicity of functions in closed case
if (pHIS->K==1)
ClosedModY(pHIS->l[lnum], (int)(pHIS->beta+0.2), &x, &phisign, &dphisign);
//Loop over output values
if ((x<xmin)||(x>xmax)){
//Outside interpolation region, set to zero.
#ifdef HERMITE_DO_PHI
Phi[j] = 0.0;
#endif
#ifdef HERMITE_DO_DPHI
dPhi[j] = 0.0;
#endif
#ifdef HERMITE_DO_D2PHI
d2Phi[j] = 0.0;
#endif
continue;
}
if ((x>right_border)||(x<left_border)){
if ((x>next_border)||(x<left_border)){
current_border_idx = ((int) ((x-xmin)/deltax))+1;
current_border_idx = MAX(1,current_border_idx);
current_border_idx = MIN(nx-1,current_border_idx);
//printf("Current border index at jump: %d\n",current_border_idx);
//max operation takes care of case x = xmin,
//min operation takes care of case x = xmax.
//Calculate left derivatives:
cotKm = cotK[current_border_idx-1];
sinKm = sinK[current_border_idx-1];
sinKm2 = sinKm*sinKm;
ym = Phi_l[current_border_idx-1];
dym = dPhi_l[current_border_idx-1];
d2ym = -2*dym*cotKm+ym*(lxlp1/sinKm2-beta2+K);
#if defined HERMITE_DO_DPHI || defined HERMITE_DO_D2PHI
d3ym = -2*cotKm*d2ym-2*ym*lxlp1*cotKm/sinKm2+
dym*(K-beta2+(2+lxlp1)/sinKm2);
#endif
#ifdef HERMITE_DO_D2PHI
d4ym = -2*cotKm*d3ym + d2ym*(K-beta2+(4+lxlp1)/sinKm2)+
dym*(-4*(1+lxlp1)*cotKm/sinKm2)+
ym*(2*lxlp1/sinKm2*(2*cotKm*cotKm+1/sinKm2));
#endif
}
else{
//x>current_border but not next border: I have moved to next block.
current_border_idx++;
//printf("Current border index at else: %d\n",current_border_idx);
//Copy former right derivatives to left derivatives.
ym = yp;
dym = dyp;
d2ym = d2yp;
#if defined HERMITE_DO_DPHI || defined HERMITE_DO_D2PHI
d3ym = d3yp;
#endif
#ifdef HERMITE_DO_D2PHI
d4ym = d4yp;
#endif
sinKm = sinKp;
cotKm = cotKp;
}
left_border = xvec[MAX(0,current_border_idx-1)];
right_border = xvec[current_border_idx];
next_border = xvec[MIN(nx-1,current_border_idx+1)];
//Evaluate right derivatives and calculate coefficients:
cotKp = cotK[current_border_idx];
sinKp = sinK[current_border_idx];
sinKp2 = sinKp*sinKp;
yp = Phi_l[current_border_idx];
dyp = dPhi_l[current_border_idx];
d2yp = -2*dyp*cotKp+yp*(lxlp1/sinKp2-beta2+K);
#if defined HERMITE_DO_DPHI || defined HERMITE_DO_D2PHI
d3yp = -2*cotKp*d2yp-2*yp*lxlp1*cotKp/sinKp2+
dyp*(K-beta2+(2+lxlp1)/sinKp2);
#endif
#ifdef HERMITE_DO_D2PHI
d4yp = -2*cotKp*d3yp + d2yp*(K-beta2+(4+lxlp1)/sinKp2)+
dyp*(-4*(1+lxlp1)*cotKp/sinKp2)+
yp*(2*lxlp1/sinKp2*(2*cotKp*cotKp+1/sinKp2));
#endif
#ifdef HERMITE_DO_PHI
a1 = dym*deltax;
a2 = 0.5*d2ym*deltax2;
a3 = (-1.5*d2ym+0.5*d2yp)*deltax2-(6*dym+4*dyp)*deltax-10*(ym-yp);
a4 = (1.5*d2ym-d2yp)*deltax2+(8*dym+7*dyp)*deltax+15*(ym-yp);
a5 = (-0.5*d2ym+0.5*d2yp)*deltax2-3*(dym+dyp)*deltax-6*(ym-yp);
#endif
#ifdef HERMITE_DO_DPHI
b1 = d2ym*deltax;
b2 = 0.5*d3ym*deltax2;
b3 = (-1.5*d3ym+0.5*d3yp)*deltax2-(6*d2ym+4*d2yp)*deltax-10*(dym-dyp);
b4 = (1.5*d3ym-d3yp)*deltax2+(8*d2ym+7*d2yp)*deltax+15*(dym-dyp);
b5 = (-0.5*d3ym+0.5*d3yp)*deltax2-3*(d2ym+d2yp)*deltax-6*(dym-dyp);
#endif
#ifdef HERMITE_DO_D2PHI
c1 = d3ym*deltax;
c2 = 0.5*d4ym*deltax2;
c3 = (-1.5*d4ym+0.5*d4yp)*deltax2-(6*d3ym+4*d3yp)*deltax-10*(d2ym-d2yp);
c4 = (1.5*d4ym-d4yp)*deltax2+(8*d3ym+7*d3yp)*deltax+15*(d2ym-d2yp);
c5 = (-0.5*d4ym+0.5*d4yp)*deltax2-3*(d3ym+d3yp)*deltax-6*(d2ym-d2yp);
#endif
}
//Evaluate polynomial:
z = (x-left_border)/deltax;
z2 = z*z;
z3 = z2*z;
z4 = z2*z2;
z5 = z2*z3;
#ifdef HERMITE_DO_PHI
Phi[j] = (ym+a1*z+a2*z2+a3*z3+a4*z4+a5*z5)*phisign;
#endif
#ifdef HERMITE_DO_DPHI
dPhi[j] = (dym+b1*z+b2*z2+b3*z3+b4*z4+b5*z5)*dphisign;
#endif
#ifdef HERMITE_DO_D2PHI
d2Phi[j] = (d2ym+c1*z+c2*z2+c3*z3+c4*z4+c5*z5)*phisign;
#endif
}