-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
85 lines (72 loc) · 2.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import pandas as pd
import torch
import wandb
from data import ConcatDataset, DoubleSynonymsDataset, preprocesser
from torch.nn import DataParallel
from transformers import (
AlbertForMaskedLM,
AlbertTokenizer,
AlbertConfig,
AutoTokenizer,
AutoModel,
AutoConfig,
AdamW,
)
import config_lm
from model import BoylLanguegeModel, MLPHead
from train import Trainer
wandb.init(project="byolm", name="BYOLM")
config = AutoConfig.from_pretrained(config_lm.model, output_hidden_states=True)
if torch.cuda.is_available():
device = torch.device("cuda")
else:
raise ValueError("Must Use GPU")
print(f"Training with: {device}")
data_file = pd.read_csv(config_lm.data_path)
online_tokens, target_tokens = preprocesser(data_file)
online = DoubleSynonymsDataset(online_tokens)
target = DoubleSynonymsDataset(target_tokens)
dataset = ConcatDataset(online, target)
print("***** Done loading the data *****")
online_network = ByolLanguegeModel.from_pretrained("albert-large-v2", config=config)
online_network = torch.nn.DataParallel(online_network)
if load:
try:
checkpoints_folder = os.path.join(os.getcwd(), "checkpoints")
load_params = torch.load(
os.path.join(os.path.join(checkpoints_folder, "albert.model_2.pth")),
map_location=torch.device(torch.device(device)),
)
online_network.load_state_dict(load_params["online_network_state_dict"])
except FileNotFoundError:
print("Pre-trained weights not found. Training from scratch.")
target_network = torch.nn.DataParallel(
ByolLanguegeModel.from_pretrained("albert-large-v2", config=config)
)
predictor = torch.nn.DataParallel(
MLPHead(
in_channels=config.hidden_size,
mlp_hidden_size=config.hidden_size * 12,
projection_size=config.hidden_size,
)
)
wandb.watch(online_network)
if config_lm.optimizer == "adam":
optimizer = AdamW(
list(online_network.parameters()) + list(predictor.parameters()),
lr=config_lm.lr,
weight_decay=config_lm.weight_decay,
)
trainer = Trainer(
online_network=online_network,
target_network=target_network,
optimizer=optimizer,
device=device,
m=config_lm.m,
batch_size=config_lm.train_batch_size,
num_workers=train_batch_size.num_workers,
checkpoint_interval=config_lm.checkpoint_interval,
max_epochs=train_batch_size.epochs,
predictor=predictor,
)
trainer.train(dataset)