-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstft.py
42 lines (35 loc) · 1.42 KB
/
stft.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import torch
class STFT:
def __init__(self, n_fft, hop_length, dim_f, device):
self.n_fft = n_fft
self.hop_length = hop_length
self.window = torch.hann_window(
window_length=self.n_fft, periodic=True)
self.dim_f = dim_f
self.device = device
def __call__(self, x):
window = self.window.to(x.device)
batch_dims = x.shape[:-2]
c, t = x.shape[-2:]
x = x.reshape([-1, t])
x = torch.stft(x, n_fft=self.n_fft, hop_length=self.hop_length,
window=window, center=True, return_complex=True)
x = torch.view_as_real(x)
x = x.permute([0, 3, 1, 2])
x = x.reshape([*batch_dims, c, 2, -1, x.shape[-1]]
).reshape([*batch_dims, c * 2, -1, x.shape[-1]])
return x[..., :self.dim_f, :]
def inverse(self, x):
window = self.window.to(x.device)
batch_dims = x.shape[:-3]
c, f, t = x.shape[-3:]
n = self.n_fft // 2 + 1
f_pad = torch.zeros([*batch_dims, c, n - f, t]).to(x.device)
x = torch.cat([x, f_pad], -2)
x = x.reshape([*batch_dims, c // 2, 2, n, t]).reshape([-1, 2, n, t])
x = x.permute([0, 2, 3, 1])
x = x[..., 0] + x[..., 1] * 1.j
x = torch.istft(x, n_fft=self.n_fft,
hop_length=self.hop_length, window=window, center=True)
x = x.reshape([*batch_dims, 2, -1])
return x