-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcc_rate-tests.py
165 lines (137 loc) · 5.47 KB
/
cc_rate-tests.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import numpy as np
from numpy import array, log, exp, where, vectorize
def duration(cf, rate, cf_freq=1, comp_freq=1, cf_t=None,
immediate_start=False, modified=False):
r"""Duration of arbitrary sequence of cash flows
Parameters
----------
cf : sequence of floats
array of cash flows
rate : float or sequence of floats
discount rate
cf_freq : float or sequence of floats, optional
cash flow frequency (for example, 2 for semi-annual)
comp_freq : float or sequence of floats, optional
compounding frequency (for example, 2 for semi-annual)
cf_t : float or sequence of floats or None, optional
The timing of cash flows.
If None, equally spaced cash flows are assumed
immediate_start : bool or sequence of bool, optional
If True, cash flows start immediately
Else, the first cash flow is at the end of the first period.
modified : bool or sequence of bool, optional
If True, modified duration is returned
Returns
-------
float or array of floats
The duration of the cash flows
Examples
--------
>>> duration(cf=[100, 50, 75, 25], rate=10e-2).item()
1.9980073065426769
>>> duration(cf=[100, 50, 75, 25], rate=10e-2,
... immediate_start=[True, False])
array([0.99800731, 1.99800731])
"""
def one_duration(rate, cf_freq, comp_freq, immediate_start):
if cf_t is None:
start = 0 if immediate_start else 1/cf_freq
stop = start + len(cf) / cf_freq
cf_ta = np.arange(start=start, step=1/cf_freq, stop=stop)
else:
cf_ta = cf_t
cc_rate = equiv_rate(rate, from_freq=comp_freq, to_freq=np.inf)
df = exp(-cc_rate * cf_ta)
return np.dot(cf*df, cf_ta) / np.dot(cf, df)
D = vectorize(one_duration)(
rate=rate, cf_freq=cf_freq, comp_freq=comp_freq,
immediate_start=immediate_start)
D /= where(modified, 1 + rate/comp_freq, 1)
return D[()]
def npv(cf, rate, cf_freq=1, comp_freq=1, cf_t=None,
immediate_start=False):
r"""NPV of a sequence of cash flows
Parameters
----------
cf : float or sequence of floats
array of cash flows
rate : float or sequence of floats
discount rate
cf_freq : float or sequence of floats, optional
cash flow frequency (for example, 2 for semi-annual)
comp_freq : float or sequence of floats, optional
compounding frequency (for example, 2 for semi-annual)
cf_t : float or sequence of floats or None, optional
The timing of cash flows.
If None, equally spaced cash flows are assumed
immediate_start : bool or sequence of bool, optional
If True, cash flows start immediately
Else, the first cash flow is at the end of the first period.
Returns
-------
float or array of floats
The net present value of the cash flows
Examples
--------
>>> npv(cf=[-100, 150, -50, 75], rate=5e-2).item()
59.327132213429586
>>> npv(cf=[-100, 150, -50, 75], rate=5e-2, comp_freq=[1, 2])
array([59.32713221, 59.15230661])
>>> npv(cf=[-100, 150, -50, 75], rate=5e-2,
... immediate_start=[False, True])
array([59.32713221, 62.29348882])
>>> npv(cf=[-100, 150, -50, 75], cf_t=[0, 2, 5, 7], rate=[5e-2, 8e-2])
array([50.17921321, 38.33344284])
"""
def one_npv(rate, cf_freq, comp_freq, immediate_start):
if cf_t is None:
start = 0 if immediate_start else 1/cf_freq
stop = start + len(cf) / cf_freq
cf_ta = np.arange(start=start, step=1/cf_freq, stop=stop)
else:
cf_ta = array(cf_t)
cc_rate = equiv_rate(rate, from_freq=comp_freq, to_freq=np.inf)
df = exp(-cc_rate * cf_ta)
return np.dot(cf, df)
cf = array(cf)
return vectorize(one_npv)(
rate=rate, cf_freq=cf_freq, comp_freq=comp_freq,
immediate_start=immediate_start)[()]
def equiv_rate(rate, from_freq=1, to_freq=1):
r"""Convert interest rate from one compounding frequency to another
Parameters
----------
rate : float or sequence of floats
discount rate in decimal
from_freq : float or sequence of floats
compounding frequency of input rate
to_freq : float or sequence of floats
compounding frequency of output rate
Returns
-------
float or array of floats
The discount rate for the desired compounding frequency
Examples
--------
>>> equiv_rate(
... rate=10e-2, from_freq=1, to_freq=[1, 2, 12, 365, np.inf])
array([0.1 , 0.0976177 , 0.09568969, 0.09532262, 0.09531018])
>>> equiv_rate(
... rate=10e-2, from_freq=[1, 2, 12, 365, np.inf], to_freq=1)
array([0.1 , 0.1025 , 0.10471307, 0.10515578, 0.10517092])
"""
rate, from_freq, to_freq = array(rate), array(from_freq), array(to_freq)
old_settings = np.seterr(invalid='ignore')
cc_rate = where(from_freq == np.inf, rate,
log(1 + np.divide(rate, from_freq)) * from_freq)
res = where(from_freq == to_freq,
rate,
where(to_freq == np.inf,
cc_rate,
(exp(np.divide(cc_rate, to_freq)) - 1) * to_freq))[()]
np.seterr(**old_settings)
return res
cf = [-20000,1000,1500,2100,2500,3000,3500,5000,6000]
cf_t = [0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4]
rate = 0.06
print(npv(cf=cf, rate=rate, cf_t=cf_t, cf_freq=2, comp_freq=2))