-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathglobal_analysis.py
235 lines (197 loc) · 9.53 KB
/
global_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import argparse
import os
import re
from collections import defaultdict
import logging
import cv2
import matplotlib.pyplot as plt
import numpy as np
import torch.utils.data
from omegaconf.omegaconf import OmegaConf
from sklearn.metrics._plot.confusion_matrix import ConfusionMatrixDisplay
from torch.utils.data.dataloader import DataLoader
import train_and_test as tnt
import find_nearest
import settings
from data.data_loader import DATASETS
from helpers import makedir, load
from main import make_or_load_model, _print_stat
from model import PPNet
from preprocess import preprocess_input_function
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
logging.basicConfig(level=logging.INFO)
log = logging.getLogger(__name__)
def save_prototype_original_img_with_bbox(load_img_dir, fname, epoch, index,
bbox_height_start, bbox_height_end,
bbox_width_start, bbox_width_end,
color=(0, 255, 255)):
p_img_bgr = cv2.imread(os.path.join(load_img_dir, 'epoch-' + str(epoch),
'prototype-img-original' + str(index) + '.png'))
cv2.rectangle(p_img_bgr, (bbox_width_start, bbox_height_start),
(bbox_width_end - 1, bbox_height_end - 1),
color, thickness=2)
p_img_rgb = p_img_bgr[..., ::-1]
p_img_rgb = np.float32(p_img_rgb) / 255
# plt.imshow(p_img_rgb)
# plt.axis('off')
plt.imsave(fname, p_img_rgb)
def activation_precision(load_model_dir: str,
model: PPNet,
data_set: DataLoader,
epoch_number_str: int,
preprocess_input_function=None,
percentile: int = 95,
per_proto: bool = False):
"""Interpretability metric (IAIA-BL paper)"""
print('Compute activation precision')
n_prototypes = model.module.num_prototypes
precisions = []
per_proto_hp = defaultdict(list)
for idx, data in enumerate(data_set):
print('\tbatch {}'.format(idx))
if True:
with_fine_annotation = data[4]
search_batch_input = data[0][with_fine_annotation]
search_y = data[1][with_fine_annotation]
fine_anno = data[3][with_fine_annotation]
if len(search_y) == 0:
print(f'Skip {idx}')
continue
else:
search_batch_input = data[0]
search_y = data[1]
fine_anno = data[3]
if preprocess_input_function is not None:
# print('preprocessing input for pushing ...')
# search_batch = copy.deepcopy(search_batch_input)
search_batch = preprocess_input_function(search_batch_input)
else:
search_batch = search_batch_input
with torch.no_grad():
search_batch = search_batch.to(device)
fine_anno = fine_anno.to(device)
protoL_input_torch, proto_dist_torch = model.module.push_forward(
search_batch)
proto_acts = model.module.distance_2_similarity(proto_dist_torch)
proto_acts = torch.nn.Upsample(
size=(search_batch.shape[2], search_batch.shape[3]), mode='bilinear',
align_corners=False)(proto_acts)
# confirm prototype class identity
load_img_dir = os.path.join(load_model_dir, 'img')
prototype_info = np.load(os.path.join(load_img_dir,
f'epoch-{epoch_number_str}',
f'bb{epoch_number_str}.npy'))
prototype_img_identity = prototype_info[:, -1]
print('Prototypes are chosen from ' + str(
len(set(prototype_img_identity))) + ' number of classes.')
print('Their class identities are: ' + str(prototype_img_identity))
proto_acts_ = np.copy(proto_acts.detach().cpu().numpy())
fine_anno_ = np.copy(fine_anno.detach().cpu().numpy())
assert proto_acts_.shape[0] == fine_anno_.shape[0]
for img_idx, (activation_maps_per_proto, fine_annotation) in enumerate(
zip(proto_acts_, fine_anno_)):
# for every test img
for j in range(n_prototypes):
# for each proto
if prototype_img_identity[j] == search_y[img_idx]:
# if proto class matches img class
activation_map = activation_maps_per_proto[j]
threshold = np.percentile(activation_map, percentile)
mask = np.ones(activation_map.shape)
mask[activation_map < threshold] = 0
mask = mask * activation_map
assert fine_annotation.shape == mask.shape
denom = np.sum(mask)
num = np.sum(mask * fine_annotation)
pr = num / denom
precisions.append(pr)
per_proto_hp[j].append(pr)
if per_proto:
per_proto_hp_list = []
for k, v in per_proto_hp.items():
per_proto_hp_list.append((k, v))
per_proto_hp_list.sort(key=lambda x: x[0])
return per_proto_hp_list
else:
return np.average(np.asarray(precisions))
def main(load_model_path: str):
load_model_dir = os.path.dirname(load_model_path)
model_name = os.path.basename(load_model_path)
epoch_iter = re.search(r'\d+(_\d+)?', model_name).group(0)
start_epoch_number = re.search(r'\d+', epoch_iter).group(0)
run_cfg: settings.ExperimentConfig = \
OmegaConf.create(load(os.path.join(load_model_dir, 'stat.pickle'))['cfg'])
run_cfg.data.data_path = run_cfg.data.relative_data_path
print('load model from ' + load_model_path)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
ppnet = make_or_load_model(run_cfg, load_model_path, device)
ppnet = ppnet.to(device)
ppnet_multi = torch.nn.DataParallel(ppnet)
ppnet_multi.eval()
load_img_dir = os.path.join(load_model_dir, 'img')
prototype_info = np.load(os.path.join(load_img_dir, f'epoch-{start_epoch_number}',
f'bb{start_epoch_number}.npy'))
k = 50
data_module = DATASETS[run_cfg.data.name](run_cfg, None, global_analysis=False)
data_module.prepare_data(loss_image=True)
dataset = data_module.get_dataset()
stat_test = tnt.test(model=ppnet_multi, dataset=dataset,
log=log,
coefs=run_cfg.model.coefs, debug_cfg=run_cfg.debug,
device=device)
_print_stat('debug', log, None, stat_test, epoch=True, enable_wandb=False)
ConfusionMatrixDisplay.from_predictions(stat_test['all_target'],
stat_test['all_predicted']).plot()
plt.savefig(os.path.join(os.path.dirname(load_model_path),
f'{os.path.basename(load_model_path).split(".pth")[0]}_test_all.pdf'))
del dataset
data_module = DATASETS[run_cfg.data.name](run_cfg, None, global_analysis=True)
data_module.prepare_data(True)
dataset = data_module.get_dataset()
# pr = activation_precision(load_model_dir,
# ppnet_multi, dataset.test_loader, start_epoch_number,
# preprocess_input_function=preprocess_input_function,
# per_proto=True)
# dump(os.path.join(load_model_dir,
# f'{epoch_iter}prototypes_activation_precision_testset.pickle'),
# pr)
# print(pr)
for data, suffix in [
(dataset.loss_loader, '_nearest_kernel_set'),
(dataset.train_push_loader, '_nearest_train'),
# (dataset.test_loader, '_nearest_test'),
# (dataset.kernel_set_loader, '_nearest_kernel_set')
]:
root_dir_for_saving_images = load_model_path.split('.pth')[0] + suffix
makedir(root_dir_for_saving_images)
find_nearest.find_k_nearest_patches_to_prototypes(
dataloader=data, # pytorch dataloader (must be unnormalized in [0,1])
prototype_network_parallel=ppnet_multi,
# pytorch network with prototype_vectors
k=k,
preprocess_input_function=preprocess_input_function, # normalize if needed
full_save=True,
root_dir_for_saving_images=root_dir_for_saving_images,
log=print)
# save prototypes in original images
for j in range(ppnet.num_prototypes):
makedir(os.path.join(root_dir_for_saving_images, str(j)))
save_prototype_original_img_with_bbox(
load_img_dir=load_img_dir,
fname=os.path.join(root_dir_for_saving_images, str(j),
'prototype_in_original_pimg.png'),
epoch=start_epoch_number,
index=j,
bbox_height_start=prototype_info[j][1],
bbox_height_end=prototype_info[j][2],
bbox_width_start=prototype_info[j][3],
bbox_width_end=prototype_info[j][4],
color=(0, 255, 255))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-gpuid', nargs=1, type=str, default='0')
parser.add_argument('model', type=str, help='path to the saved model to analyze')
args = parser.parse_args()
if os.environ.get('CUDA_VISIBLE_DEVICES') is None:
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpuid
main(args.model)