-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
executable file
·85 lines (76 loc) · 3.71 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import torch
import numpy as np
from dataset import FloorplanGraphDataset
from utils import accuracy
from model import Model
from torch.nn import Linear
from torch_geometric.data import DataLoader
from torch_geometric.nn import SAGEConv, GATConv, GCNConv, TAGConv
import pathlib
import argparse
if __name__ == '__main__':
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--model', choices=['mlp', 'gcn', 'gat', 'sage', 'tagcn'], default='sage', help='Type of model')
parser.add_argument('--hidden', type=int, default=2, help='Number of hidden/messsage passing layers')
parser.add_argument('--epoch', type=int, default=100, help='Number of epochs to train')
parser.add_argument('--lr', type=float, default=0.004, help='Learning rate')
parser.add_argument('--step', type=int, default=10, help='Step size for exponential learning rate scheduling')
parser.add_argument('--gamma', type=float, default=0.8, help='Decay rate for exponential learning rate scheduling')
parser.add_argument('--bs', type=int, default=128, help='Batch size for training')
parser.add_argument('--outpath', type=str, default='./results', help='Path to save results')
parser.add_argument('--dataset_file', type=str, default='./data/housegan_clean_data.npy', help='House-GAN dataset .npy file path')
args = parser.parse_args()
models = {
'mlp': Linear,
'gcn': GCNConv,
'gat': GATConv,
'sage': SAGEConv,
'tagcn': TAGConv,
}
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
print(device)
outpath = pathlib.Path(args.outpath)
outpath.mkdir(parents=True, exist_ok=True)
torch.manual_seed(42)
model = Model(layer_type=models[args.model], n_hidden=args.hidden)
print(model)
model = model.to(device)
dataset = FloorplanGraphDataset(path=args.dataset_file, split=None)
train = [dataset[i].to(device) for i in range(120000)]
trainloader = DataLoader(train, batch_size=args.bs, shuffle=True)
trainloader2 = DataLoader(train, batch_size=120000)
test = [dataset[i].to(device) for i in range(120000,143184)]
testloader = DataLoader(test, batch_size=23184)
num_epochs = args.epoch
lr = args.lr
step_size = args.step
gamma = args.gamma
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
exp_lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=step_size, gamma=gamma)
loss_ep = []
te_acc_ep = []
tr_acc_ep = []
for epoch in range(num_epochs):
model.train()
loss = 0
for data in trainloader:
data = data.to(device)
optimizer.zero_grad()
out = model(data.x, data.edge_index)
loss_ = criterion(out, data.y)
loss_.backward()
optimizer.step()
loss += loss_.item()
exp_lr_scheduler.step()
loss/=len(train)
tr_acc = accuracy(model, trainloader2)
te_acc = accuracy(model, testloader)
loss_ep.append(loss)
tr_acc_ep.append(tr_acc)
te_acc_ep.append(te_acc)
print(f'Epoch [{epoch+1}/{num_epochs}] Loss: {loss:.10f}, Train Acc: {tr_acc:.6f}, Test Acc: {te_acc:.6f}')
result = np.array([loss_ep, tr_acc_ep, te_acc_ep]).T
np.savetxt(outpath/f'{type(model.layer1).__name__}{len(model.layer2)+1}_loss_tracc_teacc_{lr}_{num_epochs}_{step_size}_{gamma}.txt', result)
max_idx = result[:,2].argmax()
print(f'\nMax Test Accuracy at Epoch {max_idx+1}: {result[max_idx]}\n')