forked from dhansel/ArduinoFDC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathArduinoFDC.cpp
1815 lines (1534 loc) · 70.8 KB
/
ArduinoFDC.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// -----------------------------------------------------------------------------
// 3.5"/5.25" DD/HD Disk controller for Arduino
// Copyright (C) 2021 David Hansel
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software Foundation,
// Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
// -----------------------------------------------------------------------------
#include "ArduinoFDC.h"
#if defined(__AVR_ATmega328P__)
// ------------------------------- Pin assignments for Arduino UNO/Nano/Pro Mini (Atmega328p) ------------------------------
#define PIN_STEP 2 // can be changed to different pin
#define PIN_STEPDIR 3 // can be changed to different pin
#define PIN_MOTORA 4 // can be changed to different pin
#define PIN_SELECTA 5 // can be changed to different pin
#define PIN_SIDE 6 // can be changed to different pin
#define PIN_INDEX 7 // accesses via IDXPORT/IDXBIT #defines below
#define PIN_READDATA 8 // must be pin 8 (ICP for timer1)
#define PIN_WRITEDATA 9 // must be pin 9 (OCP for timer1)
#define PIN_WRITEGATE 10 // accessed via WGPORT/WGBIT #defines below
#define PIN_TRACK0 11 // can be changed to different pin
#define PIN_WRITEPROT 12 // can be changed to different pin or commented out
#define PIN_DENSITY 13 // can be changed to different pin or commented out
#define PIN_MOTORB A0 // can be changed to different pin or commented out (together with PIN_SELECTB)
#define PIN_SELECTB A1 // can be changed to different pin or commented out (together with PIN_MOTORB)
asm (" .equ TIFR, 0x16\n" // timer 1 flag register
" .equ TOV, 0\n" // overflow flag
" .equ OCF, 1\n" // output compare flag
" .equ ICF, 5\n" // input capture flag
" .equ TCCRC, 0x82\n" // timer 1 control register C
" .equ FOC, 0x80\n" // force output compare flag
" .equ TCNTL, 0x84\n" // timer 1 counter (low byte)
" .equ ICRL, 0x86\n" // timer 1 input capture register (low byte)
" .equ OCRL, 0x88\n" // timer 1 output compare register (low byte)
" .equ IDXPORT, 0x29\n" // INDEX pin register (digital pin 7, register PD7, accessed via LDS instruction)
" .equ IDXBIT, 7\n" // INDEX pin bit (digital pin 7, register PD7)
);
#define TIFR TIFR1 // timer 1 flag register
#define TOV TOV1 // overflow flag
#define OCF OCF1A // output compare flag
#define ICF ICF1 // input capture flag
#define TCCRA TCCR1A // timer 1 control register A
#define COMA1 COM1A1 // timer 1 output compare mode bit 1
#define COMA0 COM1A0 // timer 1 output compare mode bit 0
#define TCCRB TCCR1B // timer 1 control register B
#define CS1 CS11 // timer 1 clock select bit 1
#define CS0 CS10 // timer 1 clock select bit 0
#define WGM2 WGM12 // timer 1 waveform mode bit 2
#define TCCRC TCCR1C // timer 1 control register C
#define FOC FOC1A // force output compare flag
#define OCR OCR1A // timer 1 output compare register
#define TCNT TCNT1 // timer 1 counter
#define IDXPORT PIND // INDEX pin port (digital pin 7, register PD7)
#define IDXBIT 7 // INDEX pin bit (digital pin 7, register PD7)
#define WGPORT DDRB // WRITEGATE pin port (digital pin 10, register PB2)
#define WGBIT 2 // WRITEGATE pin bit (digital pin 10, register PB2)
#define OCDDR DDRB // DDR controlling WRITEDATA pin
#define OCBIT 1 // bit for WRITEDATA pin
#elif defined(__AVR_ATmega32U4__)
// ----------------------- Pin assignments for Arduino Leonardo/Micro (Atmega32U4) --------------------------
#define PIN_STEP 2 // can be changed to different pin
#define PIN_STEPDIR 3 // can be changed to different pin
#define PIN_READDATA 4 // must be pin 4 (ICP for timer1)
#define PIN_MOTORA 5 // can be changed to different pin
#define PIN_SELECTA 6 // can be changed to different pin
#define PIN_SIDE 7 // can be changed to different pin
#define PIN_INDEX 8 // accesses via IDXPORT/IDXBIT #defines below
#define PIN_WRITEDATA 9 // must be pin 9 (OCP for timer1)
#define PIN_WRITEGATE 10 // accessed via WGPORT/WGBIT #defines below
#if defined(ARDUINO_AVR_LEONARDO)
#define PIN_TRACK0 11 // can be changed to different pin
#define PIN_WRITEPROT 12 // can be changed to different pin or commented out
#define PIN_DENSITY 13 // can be changed to different pin or commented out
#else
#define PIN_TRACK0 14 // can be changed to different pin
#define PIN_WRITEPROT 15 // can be changed to different pin or commented out
#define PIN_DENSITY 16 // can be changed to different pin or commented out
#endif
#define PIN_MOTORB A0 // can be changed to different pin or commented out (together with PIN_SELECTB)
#define PIN_SELECTB A1 // can be changed to different pin or commented out (together with PIN_MOTORB)
asm (" .equ TIFR, 0x16\n" // timer 1 flag register
" .equ TOV, 0\n" // overflow flag
" .equ OCF, 1\n" // output compare flag
" .equ ICF, 5\n" // input capture flag
" .equ TCCRC, 0x82\n" // timer 1 control register C
" .equ FOC, 0x80\n" // force output compare flag
" .equ TCNTL, 0x84\n" // timer 1 counter (low byte)
" .equ ICRL, 0x86\n" // timer 1 input capture register (low byte)
" .equ OCRL, 0x88\n" // timer 1 output compare register (low byte)
" .equ IDXPORT, 0x23\n" // INDEX pin register (digital pin 8, register PB4, accessed via LDS instruction)
" .equ IDXBIT, 4\n" // INDEX pin bit (digital pin 8, register PB4)
);
#define TIFR TIFR1 // timer 1 flag register
#define TOV TOV1 // overflow flag
#define OCF OCF1A // output compare flag
#define ICF ICF1 // input capture flag
#define TCCRA TCCR1A // timer 1 control register A
#define COMA1 COM1A1 // timer 1 output compare mode bit 1
#define COMA0 COM1A0 // timer 1 output compare mode bit 0
#define TCCRB TCCR1B // timer 1 control register B
#define CS1 CS11 // timer 1 clock select bit 1
#define CS0 CS10 // timer 1 clock select bit 0
#define WGM2 WGM12 // timer 1 waveform mode bit 2
#define TCCRC TCCR1C // timer 1 control register C
#define FOC FOC1A // force output compare flag
#define OCR OCR1A // timer 1 output compare register
#define TCNT TCNT1 // timer 1 counter
#define IDXPORT PINB // INDEX pin port (digital pin 8, register PB4)
#define IDXBIT 4 // INDEX pin bit (digital pin 8, register PB4)
#define WGPORT DDRB // WRITEGATE pin port (digital pin 10, register PB6)
#define WGBIT 6 // WRITEGATE pin bit (digital pin 10, register PB6)
#define OCDDR DDRB // WRITEDATA pin port (digital pin 9, register PB5)
#define OCBIT 5 // WRITEDATA pin bit (digital pin 9, register PB5)
#elif defined(__AVR_ATmega2560__)
// ------------------------------ Pin assignments for Arduino Mega (Atmega2560) -----------------------------
#define PIN_STEP 53 // can be changed to different pin
#define PIN_STEPDIR 52 // can be changed to different pin
#define PIN_MOTORA 51 // can be changed to different pin
#define PIN_SELECTA 50 // can be changed to different pin
#define PIN_SIDE 49 // can be changed to different pin
#define PIN_INDEX 47 // accessed via IDXPORT/IDXBIT #defines below
#define PIN_READDATA 48 // must be pin 48 (ICP for timer5)
#define PIN_WRITEDATA 46 // must be pin 46 (OCP for timer5)
#define PIN_WRITEGATE 45 // accessed via WGPORT/WGBIT #defines below
#define PIN_TRACK0 44 // can be changed to different pin
#define PIN_WRITEPROT 43 // can be changed to different pin or commented out
#define PIN_DENSITY 42 // can be changed to different pin or commented out
#define PIN_MOTORB 41 // can be changed to different pin or commented out (together with PIN_SELECTB)
#define PIN_SELECTB 40 // can be changed to different pin or commented out (together with PIN_MOTORB)
asm (" .equ TIFR, 0x1A\n" // timer 5 flag register
" .equ TOV, 0\n" // overflow flag
" .equ OCF, 1\n" // output compare flag
" .equ ICF, 5\n" // input capture flag
" .equ TCCRC, 0x122\n" // timer 5 control register C
" .equ FOC, 0x80\n" // force output compare flag
" .equ TCNTL, 0x124\n" // timer 5 counter (low byte)
" .equ ICRL, 0x126\n" // timer 5 input capture register (low byte)
" .equ OCRL, 0x128\n" // timer 5 output compare register (low byte)
" .equ IDXPORT, 0x109\n" // INDEX pin register (digital pin 47, register PL2)
" .equ IDXBIT, 2\n" // INDEX pin bit (digital pin 47, register PL2)
);
#define TIFR TIFR5 // timer 5 flag register
#define TOV TOV5 // overflow flag
#define OCF OCF5A // output compare flag
#define ICF ICF5 // input capture flag
#define TCCRA TCCR5A // timer 5 control register A
#define COMA1 COM5A1 // timer 5 output compare mode bit 1
#define COMA0 COM5A0 // timer 5 output compare mode bit 0
#define TCCRB TCCR5B // timer 5 control register B
#define CS1 CS51 // timer 5 clock select bit 1
#define CS0 CS50 // timer 5 clock select bit 0
#define WGM2 WGM52 // timer 5 waveform mode bit 2
#define TCCRC TCCR5C // timer 5 control register C
#define FOC FOC5A // force output compare flag
#define OCR OCR5A // timer 5 output compare register
#define TCNT TCNT5 // timer 5 counter
#define IDXPORT PINL // INDEX pin port (digital pin 47, register PL2)
#define IDXBIT 2 // INDEX pin bit (digital pin 47, register PL2)
#define WGPORT DDRL // WRITEGATE pin port (digital pin 45, register PL4)
#define WGBIT 4 // WRITEGATE pin bit (digital pin 45, register PL4)
#define OCDDR DDRL // DDR controlling WRITEDATA pin
#define OCBIT 3 // bit for WRITEDATA pin
#else
#error "ArduinoFDC library requires either an ATMega328P, Atmega32U4 or ATMega2560 processor (Arduino UNO, Leonardo or MEGA)"
#endif
#if F_CPU != 16000000
#error "ArduinoFDC library requires 16MHz clock speed"
#endif
struct DriveGeometryStruct
{
byte numTracks;
byte numSectors;
byte dataGap;
byte trackSpacing;
};
static struct DriveGeometryStruct geometry[7] =
{
{40, 9, 80, 1}, // 5.25" DD (360 KB)
{40, 9, 80, 2}, // 5.25" DD disk in HD drive (360 KB)
{80, 15, 85, 1}, // 5.25" HD (1.2 MB)
{80, 9, 80, 1}, // 3.5" DD (720 KB)
{80, 18, 100, 1}, // 3.5" HD (1.44 MB)
{40, 16, 80, 1}, // 3.5" double density (327680 bytes)
{80, 16, 80, 1} // 3.5" double density (655360 bytes)
};
// un-commenting this will write more detailed error information to Serial
#define DEBUG
ArduinoFDCClass ArduinoFDC;
static byte header[7];
// digitalWrite function for simulating open-collector outputs.
// Each output pin must be initialized by digitalWrite(pin, LOW) and pinMode(PIN, INPUT)
// after that, switching the pinMode to INPUT will set the pin to high-Z state
// and switching to OUTPUT will pull the pin low.
// The floppy disk interface specification expects outputs to be open-collector
void digitalWriteOC(byte pin, byte state)
{ if( state==LOW ) pinMode(pin, OUTPUT); else pinMode(pin, INPUT); }
static const uint16_t PROGMEM crc16_table[256] =
{
0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50A5, 0x60C6, 0x70E7, 0x8108, 0x9129, 0xA14A, 0xB16B, 0xC18C, 0xD1AD, 0xE1CE, 0xF1EF,
0x1231, 0x0210, 0x3273, 0x2252, 0x52B5, 0x4294, 0x72F7, 0x62D6, 0x9339, 0x8318, 0xB37B, 0xA35A, 0xD3BD, 0xC39C, 0xF3FF, 0xE3DE,
0x2462, 0x3443, 0x0420, 0x1401, 0x64E6, 0x74C7, 0x44A4, 0x5485, 0xA56A, 0xB54B, 0x8528, 0x9509, 0xE5EE, 0xF5CF, 0xC5AC, 0xD58D,
0x3653, 0x2672, 0x1611, 0x0630, 0x76D7, 0x66F6, 0x5695, 0x46B4, 0xB75B, 0xA77A, 0x9719, 0x8738, 0xF7DF, 0xE7FE, 0xD79D, 0xC7BC,
0x48C4, 0x58E5, 0x6886, 0x78A7, 0x0840, 0x1861, 0x2802, 0x3823, 0xC9CC, 0xD9ED, 0xE98E, 0xF9AF, 0x8948, 0x9969, 0xA90A, 0xB92B,
0x5AF5, 0x4AD4, 0x7AB7, 0x6A96, 0x1A71, 0x0A50, 0x3A33, 0x2A12, 0xDBFD, 0xCBDC, 0xFBBF, 0xEB9E, 0x9B79, 0x8B58, 0xBB3B, 0xAB1A,
0x6CA6, 0x7C87, 0x4CE4, 0x5CC5, 0x2C22, 0x3C03, 0x0C60, 0x1C41, 0xEDAE, 0xFD8F, 0xCDEC, 0xDDCD, 0xAD2A, 0xBD0B, 0x8D68, 0x9D49,
0x7E97, 0x6EB6, 0x5ED5, 0x4EF4, 0x3E13, 0x2E32, 0x1E51, 0x0E70, 0xFF9F, 0xEFBE, 0xDFDD, 0xCFFC, 0xBF1B, 0xAF3A, 0x9F59, 0x8F78,
0x9188, 0x81A9, 0xB1CA, 0xA1EB, 0xD10C, 0xC12D, 0xF14E, 0xE16F, 0x1080, 0x00A1, 0x30C2, 0x20E3, 0x5004, 0x4025, 0x7046, 0x6067,
0x83B9, 0x9398, 0xA3FB, 0xB3DA, 0xC33D, 0xD31C, 0xE37F, 0xF35E, 0x02B1, 0x1290, 0x22F3, 0x32D2, 0x4235, 0x5214, 0x6277, 0x7256,
0xB5EA, 0xA5CB, 0x95A8, 0x8589, 0xF56E, 0xE54F, 0xD52C, 0xC50D, 0x34E2, 0x24C3, 0x14A0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,
0xA7DB, 0xB7FA, 0x8799, 0x97B8, 0xE75F, 0xF77E, 0xC71D, 0xD73C, 0x26D3, 0x36F2, 0x0691, 0x16B0, 0x6657, 0x7676, 0x4615, 0x5634,
0xD94C, 0xC96D, 0xF90E, 0xE92F, 0x99C8, 0x89E9, 0xB98A, 0xA9AB, 0x5844, 0x4865, 0x7806, 0x6827, 0x18C0, 0x08E1, 0x3882, 0x28A3,
0xCB7D, 0xDB5C, 0xEB3F, 0xFB1E, 0x8BF9, 0x9BD8, 0xABBB, 0xBB9A, 0x4A75, 0x5A54, 0x6A37, 0x7A16, 0x0AF1, 0x1AD0, 0x2AB3, 0x3A92,
0xFD2E, 0xED0F, 0xDD6C, 0xCD4D, 0xBDAA, 0xAD8B, 0x9DE8, 0x8DC9, 0x7C26, 0x6C07, 0x5C64, 0x4C45, 0x3CA2, 0x2C83, 0x1CE0, 0x0CC1,
0xEF1F, 0xFF3E, 0xCF5D, 0xDF7C, 0xAF9B, 0xBFBA, 0x8FD9, 0x9FF8, 0x6E17, 0x7E36, 0x4E55, 0x5E74, 0x2E93, 0x3EB2, 0x0ED1, 0x1EF0
};
static uint16_t calc_crc(byte *buf, int n)
{
// already includes sync marks (0xA1, 0xA1, 0xA1)
uint16_t crc = 0xCDB4;
// compute CRC of remaining data
while( n-- > 0 )
crc = pgm_read_word_near(crc16_table + (((crc >> 8) ^ *buf++) & 0xff)) ^ (crc << 8);
return crc;
}
static bool is_write_protected()
{
#if defined(PIN_WRITEPROT)
return !digitalRead(PIN_WRITEPROT);
#else
return false;
#endif
}
static bool check_pulse()
{
// reset timer and capture/overrun flags
TCNT = 0;
TIFR = bit(ICF) | bit(TOV);
// wait for either input capture or timer overrun
while( !(TIFR & (bit(ICF) | bit(TOV))) );
// if there was an input capture then we are ok
bool res = (TIFR & bit(ICF))!=0;
// reset input capture and timer overun flags
TIFR = bit(ICF) | bit(TOV);
return res;
}
static bool wait_index_hole()
{
// reset timer and overrun flags
TCNT = 0;
TIFR = bit(TOV);
byte ctr = 0;
// wait for END of index hole (in case we're on the hole right now)
while( !(IDXPORT & bit(IDXBIT)) )
{
if( TIFR & bit(TOV) )
{
// timer overflow happens every 4.096ms (65536 cycles at 16MHz)
// meaning we haven't found a sync in that amount of time
if( ++ctr == 0 )
{
// we have tried for 256 * 4.096ms = 1.048 seconds to find a index hole
// one rotation is 166 or 200ms so we have tried for 5 or more rotations => give up
#ifdef DEBUG
Serial.println(F("No index hole signal!")); Serial.flush();
#endif
return false;
}
// clear overflow flag
TIFR = bit(TOV);
}
}
// wait for START of index hole (same as above)
ctr = 0;
while( (IDXPORT & bit(IDXBIT)) )
{
if( TIFR & bit(TOV) )
{
if( ++ctr == 0 )
{
#ifdef DEBUG
Serial.println(F("No index hole signal!")); Serial.flush();
#endif
return false;
}
TIFR = bit(TOV);
}
}
return true;
}
static byte read_data(byte bitlen, byte *buffer, unsigned int n, byte verify)
{
byte status;
// expect at least 10 bytes of 0x00 followed by three sync marks (0xA1 with one missing clock bit)
// Data bits : 0 0 ...0 1 0 1 0 0*0 0 1 1 0 1 0 0*0 0 1 1 0 1 0 0*0 0 1
// In MFM : (0)1010...10 0100010010001001 0100010010001001 0100010010001001
asm volatile
(
// define READPULSE macro (wait for pulse)
// macro arguments:
// length: none => just wait for pulse, don't check ( 9 cycles)
// 1 => wait for pulse and jump if NOT short (12/14 cycles)
// 2 => wait for pulse and jump if NOT medium (14/16 cycles)
// 3 => wait for pulse and jump if NOT long (12/14 cycles)
// dst: label to jump to if DIFFERENT pulse found
//
// on entry: r16 contains minimum length of medium pulse
// r17 contains minimum length of long pulse
// r18 contains time of previous pulse
// on exit: r18 is updated to the time of this pulse
// r22 contains the pulse length in timer ticks (=processor cycles)
// CLOBBERS: r19
".macro READPULSE length=0,dst=undefined\n"
" sbis TIFR, ICF\n" // (1/2) skip next instruction if timer input capture seen
" rjmp .-4\n" // (2) wait more
" lds r19, ICRL\n" // (2) get time of input capture (ICR1L, lower 8 bits only)
" sbi TIFR, ICF\n " // (2) clear input capture flag
" mov r22, r19\n" // (1) calculate time since previous capture...
" sub r22, r18\n" // (1) ...into r22
" mov r18, r19\n" // (1) set r18 to time of current capture
" .if \\length == 1\n" // waiting for short pule?
" cp r22, r16\n" // (1) compare r22 to min medium pulse
" brlo .+2\n" // (1/2) skip jump if less
" rjmp \\dst\n" // (3) not the expected pulse => jump to dst
" .else \n"
" .if \\length == 2\n" // waiting for medium pulse?
" cp r16, r22\n" // (1) min medium pulse < r22? => carry set if so
" brcc .+2\n" // (1/2) skip next instruction if carry is clear
" cp r22, r17\n" // (1) r22 < min long pulse? => carry set if so
" brcs .+2\n" // (1/2) skip jump if greater
" rjmp \\dst\n" // (3) not the expected pulse => jump to dst
" .else\n"
" .if \\length == 3\n"
" cp r22, r17\n" // (1) min long pulse < r22?
" brsh .+2\n" // (1/2) skip jump if greater
" rjmp \\dst\n" // (3) not the expected pulse => jump to dst
" .endif\n"
" .endif\n"
" .endif\n"
".endm\n"
// define STOREBIT macro for storing or verifying data bit
// storing data : 5/14 cycles for "1", 4/13 cycles for "0"
// verifying data : 5/15 cycles for "1", 4/14 cycles for "0"
".macro STOREBIT data:req,done:req\n"
" lsl r20\n" // (1) shift received data
".if \\data != 0\n"
" ori r20, 1\n" // (1) store "1" bit
".endif\n"
" dec r21\n" // (1) decrement bit counter
" brne .+22\n" // (1/2) skip if bit counter >0
" cpi %1, 0\n" // (1) are we verifying?
" brne .+4\n" // (1/2) if yes, jump to verify
" st Z+, r20\n" // (2) store received data byte
" rjmp .+6\n" // (2) skip verify
" ld r21, Z+\n" // (2) get next expected byte
" cpse r20, r21\n" // (1/2) compare to received byte
" rjmp rddiff\n" // (2) jump if different
" ldi r21, 8\n" // (1) re-initialize bit counter
" subi r26, 1\n" // (1) subtract one from byte counter
" sbci r27, 0\n" // (1)
" brmi \\done\n" // (1/2) done if byte counter<0
".endm\n"
// prepare for reading SYNC
" mov r16, %2\n" // (1) r16 = 2.5 * (MFM bit len) = minimum length of medium pulse
" lsr r16\n" // (1)
" add r16, %2\n" // (1)
" add r16, %2\n" // (1)
" mov r17, r16\n" // (1) r17 = 3.5 * (MFM bit len) = minimum length of long pulse
" add r17, %2\n" // (1)
" ldi %0, 0\n" // (1) default return status is S_OK
" mov r15, %0\n" // (1) initialize timer overflow counter
" sbi TIFR, TOV\n" // (2) reset timer overflow flag
// wait for at least 80x "10" (short) pulse followed by "100" (medium) pulse
"ws0: ldi r20, 0\n" // (1) initialize "short pulse" counter
"ws1: sbis TIFR, TOV\n" // (1/2) skip next instruction if timer overflow occurred
" rjmp ws2\n" // (2) continue (no overflow)
" sbi TIFR, TOV\n" // (2) reset timer overflow flag
" dec r15\n" // (1) overflow happens every 4.096ms, decrement overflow counter
" brne ws2\n" // (1/2) continue if fewer than 256 overflows
" ldi %0, 3\n" // (1) no sync found in 1.048s => return status is is S_NOSYNC
" rjmp rdend\n" // (2) done
"ws2: inc r20\n" // (1) increment "short pulse" counter
" READPULSE\n" // (9) wait for pulse
" cp r22, r16\n" // (1) pulse length < min medium pulse?
" brlo ws1\n" // (1/2) repeat if so
" cp r22, r17\n" // (1) pulse length < min long pulse?
" brsh ws0\n" // (1/2) restart if this was a long pulse (expecting medium)
" cpi r20, 80\n" // (1) did we see at least 80 short pulses?
" brlo ws0\n" // (1/2) restart if not
// expect remaining part of first sync mark (..00010010001001)
" READPULSE 3,ws0\n" // (12) expect long pulse (0001)
" READPULSE 2,ws0\n" // (14) expect medium pulse (001)
" READPULSE 3,ws0\n" // (12) expect long pulse (0001)
" READPULSE 2,ws0\n" // (14) expect medium pulse (001)
// expect second sync mark (0100010010001001)
" READPULSE 1,ws0\n" // (12) expect short pulse (01)
" READPULSE 3,ws0\n" // (12) expect long pulse (0001)
" READPULSE 2,ws0\n" // (14) expect medium pulse (001)
" READPULSE 3,ws0\n" // (12) expect long pulse (0001)
" READPULSE 2,ws0\n" // (14) expect medium pulse (001)
// expect third sync mark (0100010010001001)
" READPULSE 1,ws0\n" // (12) expect short pulse (01)
" READPULSE 3,ws0\n" // (12) expect long pulse (0001)
" READPULSE 2,ws0\n" // (14) expect medium pulse (001)
" READPULSE 3,ws0\n" // (12) expect long pulse (0001)
" READPULSE 2,ws0\n" // (14) expect medium pulse (001)
// found SYNC => prepare for reading data
" tst r27\n" // (1) test byte count
" brpl .+2\n" // (1/2) skip following instruction if not negative
" rjmp rdend\n" // (2) nothing to read (only waiting for sync) => end
" ldi r21, 8\n" // (1) initialize bit counter (8 bits per byte)
// odd section (previous data bit was "1", no unprocessed MFM bit)
// shortest path: 19 cycles, longest path: 34 cycles
// (longest path only happens when finishing a byte, about every 5-6 pulses)
"rdo: READPULSE\n" // (9) wait for pulse
" cp r22, r16\n" // (1) pulse length >= min medium pulse?
" brlo rdos\n" // (1/2) jump if not
" cp r22, r17\n" // (1) pulse length >= min long pulse?
" brlo rdom\n" // (1/2) jump if not
// long pulse (0001) => read "01", still odd
" STOREBIT 0,rddone\n" // (4/13) store "0" bit
" STOREBIT 1,rddone\n" // (5/14) store "1" bit
" rjmp rdo\n" // (2) back to start (still odd)
// jump target for relative conditional jumps in STOREBIT macro
"rddone: rjmp rdend\n"
// medium pulse (001) => read "0", now even
"rdom: STOREBIT 0,rddone\n" // (4/13) store "0" bit
" rjmp rde\n" // (2) back to start (now even)
// short pulse (01) => read "1", still odd
"rdos: STOREBIT 1,rddone\n" // (5/14) store "1" bit
" rjmp rdo\n" // (2) back to start (still odd)
// even section (previous data bit was "0", previous MFM "1" bit not yet processed)
// shortest path: 19 cycles, longest path: 31 cycles
"rde: READPULSE\n" // (9) wait for pulse
" cp r22, r16\n" // (1) pulse length >= min medium pulse?
" brlo rdes\n" // (1/2) jump if not
// either medium pulse (1001) or long pulse (10001) => read "01"
// (a long pulse should never occur in this section but it may just be a
// slightly too long medium pulse so count it as medium)
" STOREBIT 0,rdend\n" // (4/13) store "0" bit
" STOREBIT 1,rdend\n" // (5/14) store "1" bit
" rjmp rdo\n" // (2) back to start (now odd)
// short pulse (101) => read "0"
"rdes: STOREBIT 0,rdend\n" // (5/14) store "0" bit
" rjmp rde\n" // (2) back to start (still even)
"rddiff: ldi %0, 8\n" // return status is S_VERIFY (verify error)
"rdend:\n"
: "=r"(status) // outputs
: "r"(verify), "r"(bitlen), "x"(n-1), "z"(buffer) // inputs (x=r26/r27, z=r30/r31)
: "r15", "r16", "r17", "r18", "r19", "r20", "r21", "r22"); // clobbers
return status;
}
asm (// define WRITEPULSE macro (used in write_data and format_track)
".macro WRITEPULSE length=0\n"
" .if \\length==1\n"
" sts OCRL, r16\n" // (2) set OCRxA to short pulse length
" .endif\n"
" .if \\length==2\n"
" sts OCRL, r17\n" // (2) set OCRxA to medium pulse length
" .endif\n"
" .if \\length==3\n"
" sts OCRL, r18\n" // (2) set OCRxA to long pulse length
" .endif\n"
" sbis TIFR, OCF\n" // (1/2) skip next instruction if OCFx is set
" rjmp .-4\n" // (2) wait more
" ldi r19, FOC\n" // (1)
" sts TCCRC, r19\n" // (2) set OCP back HIGH (was set LOW when timer expired)
" sbi TIFR, OCF\n" // (2) reset OCFx (output compare flag)
".endm\n");
static void write_data(byte bitlen, byte *buffer, unsigned int n)
{
// make sure OC1A is high before we enable WRITE_GATE
OCDDR &= ~bit(OCBIT); // disable OC1A pin
TCCRA = bit(COMA1) | bit(COMA0); // set OC1A on compare match
TCCRC |= bit(FOC); // force compare match
TCCRA = 0; // disable OC1A control by timer
OCDDR |= bit(OCBIT); // enable OC1A pin
// wait through beginning of header gap (22 bytes of 0x4F)
TCCRB |= bit(WGM2); // WGMx2:10 = 010 => clear-timer-on-compare (CTC) mode
TCNT = 0; // reset timer
OCR = 352 * bitlen - 256; // 352 MFM bit lengths (22 bytes * 8 bits/byte * 2 MFM bits/data bit) * cycles/MFM bit - 16us (overhead)
TIFR = bit(OCF); // clear OCFx
while( !(TIFR & bit(OCF)) ); // wait for OCFx
OCR = 255; // clear OCRH byte (we only modify OCRL below)
TIFR = bit(OCF); // clear OCFx
// set WRITEGATE to OUTPUT (pulls it low)
WGPORT |= bit(WGBIT);
// enable OC1A output pin control by timer (WRITE_DATA), initially high
TCCRA = bit(COMA0); // COMxA1:0 = 01 => toggle OC1A on compare match
asm volatile
(// define GETNEXTBIT macro for getting next data bit into carry (4/9 cycles)
// on entry: R20 contains the current byte
// R21 contains the bit counter
// X (R26/R27) contains the byte counter
// Z (R30/R31) contains pointer to data buffer
".macro GETNEXTBIT\n"
" dec r21\n" // (1) decrement bit counter
" brpl .+10\n" // (1/2) skip the following if bit counter >= 0
" subi r26, 1\n" // (1) subtract one from byte counter
" sbci r27, 0\n" // (1)
" brmi wdone\n" // (1/2) done if byte counter <0
" ld r20, Z+\n" // (2) get next byte
" ldi r21, 7\n" // (1) reset bit counter (7 more bits after this first one)
" rol r20\n" // (1) get next data bit into carry
".endm\n"
// initialize pulse-length registers (r16, r17, r18)
" mov r16, %0\n" // r16 = (2*bitlen)-1 = time for short ("01") pulse
" add r16, %0\n"
" dec r16\n"
" mov r17, r16\n" // r17 = (3*bitlen)-1 = time for medium ("001") pulse
" add r17, %0\n"
" mov r18, r17\n" // r18 = (4*bitlen)-1 = time for long ("0001") pulse
" add r18, %0\n"
// write 12 bytes (96 bits) of "0" (i.e. 96 "10" sequences, i.e. short pulses)
" ldi r20, 0\n"
" sts TCNTL, r20\n" // reset timer
" ldi r20, 96\n" // initialize counter
"wri: WRITEPULSE 1\n" // write short pulse
" dec r20\n" // decremet counter
" brne wri\n" // repeat until 0
// first sync "A1": 00100010010001001
" WRITEPULSE 2\n" // write medium pulse
" WRITEPULSE 3\n" // write long pulse
" WRITEPULSE 2\n" // write medium pulse
" WRITEPULSE 3\n" // write long pulse (this is the missing clock bit)
" WRITEPULSE 2\n" // write medium pulse
// second sync "A1": 0100010010001001
" WRITEPULSE 1\n" // write short pulse
" WRITEPULSE 3\n" // write long pulse
" WRITEPULSE 2\n" // write medium pulse
" WRITEPULSE 3\n" // write long pulse (this is the missing clock bit)
" WRITEPULSE 2\n" // write medium pulse
// third sync "A1": 0100010010001001
" WRITEPULSE 1\n" // write short pulse
" WRITEPULSE 3\n" // write long pulse
" WRITEPULSE 2\n" // write medium pulse
" WRITEPULSE 3\n" // write long pulse (this is the missing clock bit)
" WRITEPULSE 2\n" // write medium pulse
// start writing data
" sts OCRL, r16\n" // (2) set up timer for "01" sequence
" ldi r21, 0\n" // (1) initialize bit counter to fetch next byte
// just wrote a "1" bit => must be followed by either "01" (for "1" bit) or "00" (for "0" bit)
// (have time to fetch next bit during the leading "0")
"wro: GETNEXTBIT\n" // (4/9) fetch next data bit into carry
" brcs wro1\n" // (1/2) jump if "1"
// next bit is "0" => write "00"
" lds r19, OCRL\n" // (2) get current OCRxAL value
" add r19, %0\n" // (2) add one-bit time
" sts OCRL, r19\n" // (2) set new OCRxAL value
" rjmp wre\n" // (2) now even
// next bit is "1" => write "01"
"wro1: WRITEPULSE\n" // (7) wait and write pulse
" sts OCRL, r16\n" // (2) set up timer for another "01" sequence
" rjmp wro\n" // (2) still odd
// just wrote a "0" bit, (i.e. either "10" or "00") where time for the trailing "0" was already added
// to the pulse length (have time to fetch next bit during the already-added "0")
"wre: GETNEXTBIT\n" // (4/9) fetch next data bit into carry
" brcs wre1\n" // (1/2) jump if "1"
// next bit is "0" => write "10"
" WRITEPULSE\n" // (7) wait and write pulse
" sts OCRL, r16\n" // (2) set up timer for another "10" sequence
" rjmp wre\n" // (2) still even
// next bit is "1" => write "01"
"wre1: lds r19, OCRL\n" // (2) get current OCRxAL value
" add r19, %0\n" // (2) add one-bit time
" sts OCRL, r19\n" // (2) set new OCRxAL value
" WRITEPULSE\n" // (7) wait and write pulse
" sts OCRL, r16\n" // (2) set up timer for "01" sequence
" rjmp wro\n" // (2) now odd
// done writing
"wdone: WRITEPULSE\n" // (9) wait for and write final pulse
: // no outputs
: "r"(bitlen), "x"(n), "z"(buffer) // inputs (x=r26/r27, z=r30/r31)
: "r16", "r17", "r18", "r19", "r20", "r21"); // clobbers
// set WRITEGATE back to input (releases it HIGH)
WGPORT &= ~bit(WGBIT);
// COMxA1:0 = 00 => disconnect OC1A (will go high)
TCCRA = 0;
// WGMx2:10 = 000 => Normal timer mode
TCCRB &= ~bit(WGM2);
}
static byte format_track(byte *buffer, byte driveType, byte bitlen, byte track, byte side)
{
// 3.5" DD disk:
// writing 95 + 1 + 65 + (7 + 37 + 515 + 69) * 8 + (7 + 37 + 515) bytes
// => 5744 bytes per track = 45952 bits
// data rate 250 kbit/second, rotation rate 300 RPM (0.2s per rotation)
// => 50000 bits unformatted capacity per track
// 3.5" HD disk:
// writing 95 + 1 + 65 + (7 + 37 + 515 + 69) * 17 + (7 + 37 + 515) bytes
// => 5744 bytes per track = 45952 bits
// data rate 500 kbit/second, rotation rate 300 RPM (0.2s per rotation)
// => 100000 bits unformatted capacity per track
byte i;
byte numsec = geometry[driveType].numSectors;
byte datagaplen = geometry[driveType].dataGap;
// pre-compute ID records
byte *ptr = buffer;
for(i=0; i<numsec; i++)
{
*ptr++ = 0xFE; // ID mark
*ptr++ = track; // cylinder number
*ptr++ = side; // side number
*ptr++ = i+1; // sector number
*ptr++ = 2; // sector length
uint16_t crc = calc_crc(ptr-5, 5);
*ptr++ = crc / 256; // CRC
*ptr++ = crc & 255; // CRC
*ptr++ = 0x4E; // first byte of post-data gap
}
noInterrupts();
// make sure OC1A is high before we enable WRITE_GATE
OCDDR &= ~bit(OCBIT); // disable OC1A pin
TCCRA = bit(COMA1) | bit(COMA0); // set OC1A on compare match
TCCRC |= bit(FOC); // force compare match
TCCRA = 0; // disable OC1A control by timer
OCDDR |= bit(OCBIT); // enable OC1A pin
// reset timer and overrun flags
TCNT = 0;
TIFR = bit(TOV);
// wait for start of index hole
if( !wait_index_hole() ) { interrupts(); return S_NOTREADY; }
TCCRB |= bit(WGM2); // WGMx2:10 = 010 => clear-timer-on-compare (CTC) mode
TCNT = 0; // reset timer
OCR = 32; // clear OCRxH byte (we only modify OCRxL below)
TIFR = bit(OCF); // clear OCFx
// set WRITEGATE to OUTPUT (pulls it low)
WGPORT |= bit(WGBIT);
// enable OC1A output pin control by timer (WRITE_DATA), initially high
TCCRA = bit(COMA0); // COMxA1:0 = 01 => toggle OC1A on compare match
asm volatile
(".macro WRTPS\n"
" sts OCRL, r16\n"
" call waitp\n"
".endm\n"
".macro WRTPM\n"
" sts OCRL, r17\n"
" call waitp\n"
".endm\n"
".macro WRTPL\n"
" sts OCRL, r18\n"
" call waitp\n"
".endm\n"
// initialize
" mov r16, %0\n" // r16 = (2*bitlen)-1 = time for short ("01") pulse
" add r16, %0\n"
" dec r16\n"
" mov r17, r16\n" // r17 = (3*bitlen)-1 = time for medium ("001") pulse
" add r17, %0\n"
" mov r18, r17\n" // r18 = (4*bitlen)-1 = time for long ("0001") pulse
" add r18, %0\n"
// 1) ---------- 56x 0x4E (pre-index gap)
//
// 0x4E 0x4E ...
// 0 1 0 0 1 1 1 0 0 1 0 0 1 1 1 0 ...
// 1001001001010100 1001001001010100 ...
// M M M M S S M M M M S S ...
// => (MMMMSS)x56
" ldi r20, 56\n" // (1) write 56 gap bytes
" call wrtgap\n" // returns 20 cycles after final pulse was written
// 2) ---------- 12x 0x00
//
// 0x4E 0x00 0x00 ...
// 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...
// 1001001001010100 1010101010101010 1010101010101010 ...
// S M M M S S M S S S S S S S S S S S S S S S ...
// => MSx95
" WRTPM\n" // write medium pulse
" ldi r20, 95\n" // write 95 short pulses
" call wrtshort\n" // returns 20 cycles after final pulse was written
// 3) ---------- 3x SYNC 0xC2
//
// 0x00 0xC2 0xC2 0xC2
// 0 0 0 0 0 0 0 0 1 1 0 0*0 0 1 0 1 1 0 0*0 0 1 0 1 1 0 0*0 0 1 0
// 1010101010101010 0101001000100100 0101001000100100 0101001000100100
// S S S S S S S S M S M L M L S M L M L S M L M
// => MSMLM(LSMLM)x2
" ldi r20, 3\n"
" WRTPM\n" // write medium pulse (returns 14 cycles after pulse)
" rjmp iskip\n" // (2)
"iloop: WRTPL\n" // write long pulse
"iskip: WRTPS\n" // write short pulse
" WRTPM\n" // write medium pulse
" WRTPL\n" // write long pulse
" WRTPM\n" // write medium pulse
" dec r20\n" // (1)
" brne iloop\n" // (1/2)
// 4) ---------- index record (0xFC)
//
// 0xC2 0xFC
// 1 1 0 0*0 0 1 0 1 1 1 1 1 1 0 0
// 0101001000100100 0101010101010010
// L S M L M L S S S S S M
// => LSSSSSM
" WRTPL\n" // write long pulse (returns 14 cycles after pulse)
" ldi r20, 5\n" // (1) write 5 short pulses
" call wrtshort\n" // 6 cycles until timer update, 20 cycles after pulse
" WRTPM\n" // write medium pulse
// 5) ---------- 50x 0x4E (post-index gap)
//
// 0xFC 0x4E 0x4E ...
// 1 1 1 1 1 1 0 0 0 1 0 0 1 1 1 0 0 1 0 0 1 1 1 0 ...
// 0101010101010010 1001001001010100 1001001001010100 ...
// L S S S S S M S M M M S S M M M M S S ...
// => SMMMSS (MMMMSS)x49
" ldi r20, 49\n" // (1) write 49 gap bytes
" WRTPS\n" // write short pulse
" call wrtgap2\n" // returns 20 cycles after final pulse was written
// 6) ---------- 12x 0x00
//
// 0x4E 0x00 0x00 ...
// 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...
// 1001001001010100 1010101010101010 1010101010101010 ...
// S M M M S S M S S S S S S S S S S S S S S S ...
// => MSx95
"secstart: WRTPM\n" // write medium pulse
" ldi r20, 95\n" // write 95 short pulses
" call wrtshort\n" // returns 20 cycles after final pulse was written
// 7) ---------- 3x SYNC 0xA1
//
// 0x00 0xA1 0xA1 0xA1
// 0 0 0 0 0 0 0 0 1 0 1 0 0*0 0 1 1 0 1 0 0*0 0 1 1 0 1 0 0*0 0 1
// 1010101010101010 0100010010001001 0100010010001001 0100010010001001
// S S S S S S S S M L M L M S L M L M S L M L M
// => MLMLM(SLMLM)x2
// do not have sufficient time after final pulse from "wrtsync" call
// => only write two bytes in "wrtsync", write final pulses directly to save time
" ldi r20, 2\n" // only write first two bytes of sync
" call wrtsync\n" // returns 20 cycles after final pulse was written
" WRTPS\n"
" WRTPL\n"
" WRTPM\n"
" WRTPL\n"
" WRITEPULSE 2\n" // write medium pulse, returns 10 cycles after pulse was written
// 8) ---------- ID record plus first 0x4E: 0xFE (cylinder) (side) (sector) (length) (CRC1) (CRC2) 0x4E)
//
// 0xA1 ... 0x4E
// 1 0 1 0 0*0 0 1 ... 0 1 0 0 1 1 1 0
// 0100010010001001 ... ??01001001010100
// S L M L M ... ? ? M M S S
// => (write pre-calculated bytes, starting odd)
// worst case needs 20 cycles before timer is initialized
" sts OCRL, r16\n" // (2) set up timer for "01" sequence
" ldi r21, 0\n" // (1) initialize bit counter to fetch next byte
" ldi r26, 8\n" // (1) initialize byte counter (8 bytes to write)
// just wrote a "1" bit => must be followed by either "01" (for "1" bit) or "00" (for "0" bit)
// (have time to fetch next bit during the leading "0")
"fio: dec r21\n" // (1) decrement bit counter
" brpl fio0\n" // (1/2) skip the following if bit counter >= 0
" subi r26, 1\n" // (1) subtract one from byte counter
" brmi fidone\n" // (1/2) done if byte counter <0
" ld r20, Z+\n" // (2) get next byte
" ldi r21, 7\n" // (1) reset bit counter (7 more bits after this first one)
"fio0: rol r20\n" // (1) get next data bit into carry
" brcs fio1\n" // (1/2) jump if "1"
// next bit is "0" => write "00"
" lds r19, OCRL\n" // (2) get current OCRxAL value
" add r19, %0\n" // (2) add one-bit time
" sts OCRL, r19\n" // (2) set new OCRxAL value
" rjmp fie\n" // (2) now even
// next bit is "1" => write "01"
"fio1: WRITEPULSE\n" // (7) wait and write pulse
" sts OCRL, r16\n" // (2) set up timer for another "01" sequence
" rjmp fio\n" // (2) still odd
// just wrote a "0" bit, (i.e. either "10" or "00") where time for the trailing "0" was already added
// to the pulse length (have time to fetch next bit during the already-added "0")
"fie: dec r21\n" // (1) decrement bit counter
" brpl fie0\n" // (1/2) skip the following if bit counter >= 0
" subi r26, 1\n" // (1) subtract one from byte counter
" brmi fidone\n" // (1/2) done if byte counter <0
" ld r20, Z+\n" // (2) get next byte
" ldi r21, 7\n" // (1) reset bit counter (7 more bits after this first one)
"fie0: rol r20\n" // (1) get next data bit into carry
" brcs fie1\n" // (1/2) jump if "1"
// next bit is "0" => write "10"
" WRITEPULSE\n" // (7) wait and write pulse
" sts OCRL, r16\n" // (2) set up timer for another "10" sequence
" rjmp fie\n" // (2) still even
// next bit is "1" => write "01"
"fie1: lds r19, OCRL\n" // (2) get current OCRxAL value
" add r19, %0\n" // (2) add one-bit time
" sts OCRL, r19\n" // (2) set new OCRxAL value
" WRITEPULSE\n" // (7) wait and write pulse
" sts OCRL, r16\n" // (2) set up timer for "01" sequence
" rjmp fio\n" // (2) now odd
"fidone: \n"
// 9) ---------- 21x 0x4E (post-ID gap)
//
// 0x4E 0x4E ...
// 0 1 0 0 1 1 1 0 0 1 0 0 1 1 1 0 ...
// 1001001001010100 1001001001010100 ...
// S M M M S S M M M M S S ...
// => (MMMMSS)x21
" ldi r20, 21\n" // (1) write 21 gap bytes
" call wrtgap\n" // returns 20 cycles after final pulse was written
// 10) ---------- 12x 0x00
//
// 0x4E 0x00 0x00 ...
// 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...
// 1001001001010100 1010101010101010 1010101010101010 ...
// S M M M S S M S S S S S S S S S S S S S S S ...
// => MSx95
" WRTPM\n" // write medium pulse
" ldi r20, 95\n" // write 95 short pulses
" call wrtshort\n" // returns 20 cycles after final pulse was written
// 11) ---------- 3x SYNC 0xA1
//
// 0x00 0xA1 0xA1 0xA1
// 0 0 0 0 0 0 0 0 1 0 1 0 0*0 0 1 1 0 1 0 0*0 0 1 1 0 1 0 0*0 0 1
// 1010101010101010 0100010010001001 0100010010001001 0100010010001001
// S S S S S S S S M L M L M S L M L M S L M L M
// => MLMLM(SLMLM)x2
" ldi r20, 3\n" // write three sync bytes
" call wrtsync\n" // returns 20 cycles after final pulse was written
// 12) ---------- data record 0xFB
//
// 0xA1 0xFB
// 1 0 1 0 0*0 0 1 1 1 1 1 1 0 1 1
// 0100010010001001 0101010101000101
// S L M L M S S S S S L S
// => SSSSSLS
" ldi r20, 5\n" // write 5 short pulses
" call wrtshort\n" // returns 20 cycles after final pulse was written
" WRTPL\n" // write long pulse
" WRTPS\n" // write short pulse
// 13) ---------- data (512x 0xF6)
//
// 0xFB 0xF6 0xF6 ...
// 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 0 1 1 1 1 0 1 1 0 ...
// 0101010101000101 0101010100010100 0101010100010100 ...
// S S S S S L S S S S S L S L S S S L S ...
// => SSSSLS LSSSLS
" ldi r26, 0\n" // write 2*256+0 = 512 bytes
" ldi r27, 2\n"
" WRTPS\n" // write short pulse
" rjmp dskip\n"
"dloop: WRTPL\n" // write long pulse
"dskip: WRTPS\n" // write short pulse
" WRTPS\n" // write short pulse
" WRTPS\n" // write short pulse
" WRTPL\n" // write long pulse
" WRTPS\n" // write short pulse
" dec r26\n" // decrement byte counter (low)
" brne dloop\n" // loop until 0
" dec r27\n" // decrement byte counter (high)
" brne dloop\n" // loop until 0
// 14) ---------- data checksum (0x2B, 0xF6)
//
// 0xF6 0x2B 0xF6
// 1 1 1 1 0 1 1 0 0 0 1 0 1 0 1 1 1 1 1 1 0 1 1 0
// 0101010100010100 1010010001000101 0101010100010100
// L S S S L S M S M L L S S S S S L S
// => MSMLSLSSSSLS
" WRTPM\n" // write medium pulse
" WRTPS\n" // write short pulse
" WRTPM\n" // write medium pulse
" WRTPL\n" // write long pulse
" WRTPL\n" // write short pulse
" WRTPS\n" // write long pulse
" WRTPS\n" // write short pulse