-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtest.py
111 lines (91 loc) · 6.66 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import unittest
from lib.finish_filing import main as finish_filing
from lib.create_dictionary import create_dictionary, create_token_dict, remove_scores_and_flatten_predictions
from lib.merge_batches import merge, prune
class TestFiling(unittest.TestCase):
def test_basic_input(self):
tree_store = {}
context_words = { "context_window": ["first", "second"], "anchor": "anchor" }
predictive_words = ["a", "b", "c"]
actual = finish_filing(tree_store, context_words, predictive_words)
expected = { "anchor": { "score": 1, "second": { "score": 1, "first": { "score": 1, "predictions": [ {"prediction": ["a", "b", "c"], "score": 1} ] } } } }
self.assertEqual(actual, expected)
class TestCreateDictionary(unittest.TestCase):
def test_basic_input(self):
tree = { "anchor": { "score": 1, "second": { "score": 1, "first": { "score": 1, "predictions": [ {"prediction": ["a", "a2", "a3"], "score": 1}, {"prediction": ["b", "b2", "b3"], "score": 1}, {"prediction": ["c", "c2", "c3"], "score": 1} ] } } } }
pruned_tree = create_dictionary(tree, 1000)
self.assertEqual(pruned_tree, tree)
def test_pruning_input(self):
tree = { "anchor": { "score": 2, "second": { "score": 1, "first": { "score": 1, "predictions": [ {"prediction": ["a", "a2", "a3"], "score": 1}, {"prediction": ["b", "b2", "b3"], "score": 1}, {"prediction": ["c", "c2", "c3"], "score": 1} ] } } },
"anchor2": { "score": 1, "second": { "score": 1, "first": { "score": 1, "predictions": [ {"prediction": ["a", "a2", "a3"], "score": 1}, {"prediction": ["b", "b2", "b3"], "score": 1}, {"prediction": ["c", "c2", "c3"], "score": 1} ] } } } }
expected_pruned_tree = { "anchor": { "score": 2, "second": { "score": 1, "first": { "score": 1, "predictions": [ {"prediction": ["a", "a2", "a3"], "score": 1}, {"prediction": ["b", "b2", "b3"], "score": 1}, {"prediction": ["c", "c2", "c3"], "score": 1} ] } } } }
pruned_tree = create_dictionary(tree, 1)
self.assertEqual(pruned_tree, expected_pruned_tree)
def test_doesnt_prune_special_keys(self):
tree = {
"anchor": {
"score": 2,
}
}
expected_pruned_tree = {
"anchor": {
"score": 2,
}
}
# Generate 21 "secondX" keys with similar structures but unique identifiers
for i in range(1, 22): # 1 through 21 inclusive
key_name = f"second{i}"
tree["anchor"][key_name] = {
"score": 1,
"first": {
"score": 1,
"predictions": [
{"prediction": [f"a{i}", f"a2{i}", f"a3{i}"], "score": 1},
{"prediction": [f"b{i}", f"b2{i}", f"b3{i}"], "score": 1},
{"prediction": [f"c{i}", f"c2{i}", f"c3{i}"], "score": 1}
]
}
}
# For the expected tree, include only the top 20 based on your sorting/pruning criteria
if i <= 20: # Include only the first 20 in the expected outcome
expected_pruned_tree["anchor"][key_name] = tree["anchor"][key_name]
# Update the test case with these trees
pruned_tree = create_dictionary(tree, 1)
self.assertEqual(pruned_tree, expected_pruned_tree)
def test_token_dict(self):
tree = {"anchor": {"score": 1, "second": {"score": 1, "first": {"score": 1, "predictions": [{ "prediction": ["a", "a2", "a3"], "score": 1}, { "prediction": ["b", "b2", "b3"], "score": 1 }, { "prediction": ["c", "c2", "c3"], "score": 1 } ]}}}}
expected_tokenized_tree = {1: {2: {12: [[3,4,5], [6,7,8], [9,10,11]]}}}
simplified = remove_scores_and_flatten_predictions(tree)
actual_tokenized_tree = create_token_dict(simplified)
self.assertEqual(actual_tokenized_tree, expected_tokenized_tree)
class TestMergingAndPruningEpochs(unittest.TestCase):
def test_merging_batches(self):
tree_1 = {
"a": {"score": 1, "a1": {"score": 1, "a2": { "score": 1, "predictions": [{ "prediction": ["ax", "ay", "az"], "score": 1 }, { "prediction": ["aalpha", "abeta", "atheta"], "score": 1 }]}}},
"b": {"score": 1, "b1": {"score": 1, "b2": { "score": 1, "predictions": [{ "prediction": ["bx", "by", "bz"], "score": 1 }, { "prediction": ["balpha", "bbeta", "btheta"], "score": 1 }]}}},
}
tree_2 = {
"a": {"score": 1, "a1": {"score": 1, "a2": { "score": 1, "predictions": [{ "prediction": ["ax", "ay", "az"], "score": 1 }, { "prediction": ["aalpha", "abeta", "atheta"], "score": 1 }]}}},
"c": {"score": 1, "c1": {"score": 1, "c2": { "score": 1, "predictions": [{ "prediction": ["cx", "cy", "cz"], "score": 1 }, { "prediction": ["calpha", "cbeta", "ctheta"], "score": 1 }]}}},
}
expected_merged_tree = {
"a": {"score": 2, "a1": {"score": 2, "a2": { "score": 2, "predictions": [{ "prediction": ["ax", "ay", "az"], "score": 2 }, { "prediction": ["aalpha", "abeta", "atheta"], "score": 2 }]}}},
"b": {"score": 1, "b1": {"score": 1, "b2": { "score": 1, "predictions": [{ "prediction": ["bx", "by", "bz"], "score": 1 }, { "prediction": ["balpha", "bbeta", "btheta"], "score": 1 }]}}},
"c": {"score": 1, "c1": {"score": 1, "c2": { "score": 1, "predictions": [{ "prediction": ["cx", "cy", "cz"], "score": 1 }, { "prediction": ["calpha", "cbeta", "ctheta"], "score": 1 }]}}},
}
actual_merged_tree = merge(tree_1, tree_2)
self.maxDiff = None
self.assertEqual(actual_merged_tree, expected_merged_tree)
def test_pruning_merged_tree(self):
tree_1 = {
"a": {"score": 2, "a1": {"score": 2, "a2": { "score": 2, "predictions": [{ "prediction": ["ax", "ay", "az"], "score": 2 }, { "prediction": ["aalpha", "abeta", "atheta"], "score": 2 }]}}},
"b": {"score": 1, "b1": {"score": 1, "b2": { "score": 1, "predictions": [{ "prediction": ["bx", "by", "bz"], "score": 1 }, { "prediction": ["balpha", "bbeta", "btheta"], "score": 1 }]}}},
"c": {"score": 1, "c1": {"score": 1, "c2": { "score": 1, "predictions": [{ "prediction": ["cx", "cy", "cz"], "score": 1 }, { "prediction": ["calpha", "cbeta", "ctheta"], "score": 1 }]}}},
}
expected_pruned_tree = {
"a": {"score": 2, "a1": {"score": 2, "a2": { "score": 2, "predictions": [{ "prediction": ["ax", "ay", "az"], "score": 2 }, { "prediction": ["aalpha", "abeta", "atheta"], "score": 2 }]}}}
}
actual_pruned_tree = prune(tree_1, 1)
self.assertEqual(actual_pruned_tree, expected_pruned_tree)
if __name__ == '__main__':
unittest.main()