-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDESCRIPTION
58 lines (58 loc) · 2.1 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
Package: glmdisc
Type: Package
Title: Discretization and Grouping for Logistic Regression
Version: 0.7.1
Date: 2024-03-05
Authors@R: c(person("Adrien", "Ehrhardt", email = "[email protected]",
role = c("aut", "cre")),
person("Vincent", "Vandewalle", email = "[email protected]",
role = c("aut")),
person("Christophe", "Biernacki", email = "[email protected]",
role = c("ctb")),
person("Philippe", "Heinrich", email = "[email protected]",
role = c("ctb")))
Maintainer: Adrien Ehrhardt <[email protected]>
Description: A Stochastic-Expectation-Maximization (SEM) algorithm (Celeux et al. (1995) <https://inria.hal.science/inria-00074164>) associated with a Gibbs sampler which purpose is to learn a constrained representation for logistic regression that is called quantization (Ehrhardt et al. (2019) <arXiv:1903.08920>). Continuous features are discretized and categorical features' values are grouped to produce a better logistic regression model. Pairwise interactions between quantized features are dynamically added to the model through a Metropolis-Hastings algorithm (Hastings, W. K. (1970) <doi:10.1093/biomet/57.1.97>).
License: GPL (>= 2)
Encoding: UTF-8
Imports:
caret (>= 6.0-82),
dplyr,
magrittr,
gam,
nnet,
RcppNumerical,
methods,
MASS,
graphics,
Rcpp (>= 0.12.13)
LinkingTo: Rcpp, RcppEigen, RcppNumerical
URL: https://adimajo.github.io
BugReports: https://github.com/adimajo/glmdisc/issues
RoxygenNote: 7.3.1
Suggests:
NPflow,
Rfast,
knitr,
rmarkdown,
testthat (>= 2.1.0),
tibble,
covr,
DT
VignetteBuilder: knitr
Collate:
'RcppExports.R'
'allClasses.R'
'cut.dataset.R'
'discretize.link.R'
'generic_cutpoints.R'
'generic_discretize.R'
'glmdisc.R'
'initialization.R'
'method_cutpoints.R'
'method_discretize.R'
'method_plot.R'
'method_predict.R'
'methods_disc.R'
'normalizedGini.R'
'semDiscretization.R'