-
Notifications
You must be signed in to change notification settings - Fork 12
/
example_nqueens.v
559 lines (486 loc) · 18.1 KB
/
example_nqueens.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
(* monae: Monadic equational reasoning in Coq *)
(* Copyright (C) 2020 monae authors, license: LGPL-2.1-or-later *)
Require Import ZArith.
From mathcomp Require Import all_ssreflect.
From mathcomp Require boolp.
From infotheo Require Import ssrZ.
Require Import preamble hierarchy monad_lib fail_lib state_lib.
(******************************************************************************)
(* N-queens example *)
(* *)
(* references: *)
(* - J. Gibbons, R. Hinze, Just do it: simple monadic equational reasoning, *)
(* ICFP 2011 *)
(* - Shin-Cheng Mu, Calculating a Backtracking Algorithm: An Exercise in *)
(* Monadic Program Derivation, TR-IIS-19-003 *)
(******************************************************************************)
Local Open Scope monae_scope.
Section nqueens_gibbons2011icfp.
Local Notation "A `2" := (Squaring A) (at level 2).
Definition place n {B} (rs : seq B) := zip (map Z_of_nat (iota 0 n)) rs.
Definition empty {B} : (seq B * seq B):= ([::] , [::]).
(* input: queen position, already threatened up/down diagonals
output: safe or not, update up/down diagonals *)
Definition test : Z`2 -> (seq Z)`2 -> bool * (seq Z)`2 :=
fun '(c, r) '(upds, downs) =>
let (u, d) := (r - c, r + c)%Z in
((u \notin upds) && (d \notin downs), (u :: upds, d :: downs)).
(* section 6.1 *)
Section purely_functional.
Definition start1 : (seq Z)`2 -> bool * (seq Z)`2 :=
fun updowns => (true, updowns).
Definition step1 : Z`2 -> (bool * (seq Z)`2) -> bool * (seq Z)`2 :=
fun cr '(restOK, updowns) =>
let (thisOK, updowns') := test cr updowns in
(thisOK && restOK, updowns').
(* over the list of column-row pairs
bool * (seq Z)`2: queens to the right safe or not,
up/down diagonals under threat from the queens so far *)
Definition safe1 : (seq Z)`2 -> seq Z`2 -> bool * (seq Z)`2 :=
foldr step1 \o start1.
Definition queens {M : nondetMonad} n : M (seq Z) :=
perms (map Z_of_nat (iota 0 n)) >>=
assert (fun x => (safe1 empty (place n x)).1).
End purely_functional.
(* section 6.2 *)
(* statefully constructing the sets of up/down diagonals threatened by the queens so far *)
Section statefully.
Variable M : stateMonad (seq Z)`2.
Definition start2 : M bool := Ret true.
Definition step2 (cr : Z`2) (k : M bool) : M bool :=
(do b' <- k ;
do uds <- get;
let (b, uds') := test cr uds in
put uds' >> Ret (b && b'))%Do.
Definition safe2 : seq Z`2 -> M bool :=
foldr step2 start2.
Lemma safe2E crs :
safe2 crs = get >>= (fun uds => let (ok, uds') := safe1 uds crs in
(put uds' >> Ret ok)).
Proof.
(* TODO(rei): how to write this proof w.o. the "set" and "transitivity"'s? *)
apply/esym; rewrite /safe2.
set f := fun x => get >>= (fun uds => let (ok, uds') := safe1 uds x in put uds' >> Ret ok) : M _.
rewrite -(@foldr_universal_ext _ _ _ _ f) //;
[apply/esym|move=> cr {}crs; apply/esym].
by rewrite /start2 /f /= -bindA getput bindskipf.
(* definition of safe1 *)
transitivity
(get >>= (fun uds =>
let (ok, uds') := step1 cr (safe1 uds crs) in put uds'>> Ret ok) : M _); last first.
by [].
(* introduce a let *)
transitivity
(get >>= (fun uds =>
let (b', uds'') := safe1 uds crs in
let (ok, uds') := step1 cr (b', uds'') in put uds' >> Ret ok) : M _); last first.
bind_ext => x.
by case: safe1.
(* definition of step1 *)
transitivity
(get >>= (fun uds =>
let (b', uds'') := safe1 uds crs in
let (b, uds''') := test cr uds'' in
let (ok, uds') := (b && b', uds''') in put uds' >> Ret ok) : M _); last first.
bind_ext => x.
case: safe1 => // h t.
rewrite /step1 /=.
by case: test.
transitivity
(get >>= (fun uds =>
let (b', uds'') := safe1 uds crs in
let (b, uds''') := test cr uds'' in
let (ok, uds') := (b && b', uds''') in (put uds'' >> put uds' >> Ret ok)) : M _); last first.
bind_ext => x.
case: safe1 => // h t.
case: test => // a b.
by rewrite putput.
(* move two of the lets *)
transitivity
(get >>= (fun uds =>
let (b', uds'') := safe1 uds crs in
put uds'' >>
let (b, uds''') := test cr uds'' in
let (ok, uds') := (b && b', uds''') in put uds' >> Ret ok) : M _); last first.
bind_ext => x.
case: safe1 => // h t.
case: test => // a b.
by rewrite bindA.
transitivity
(get >>= (fun uds =>
let (b', uds'') := safe1 uds crs in
put uds'' >>
(get >>= (fun uds4 =>
let (b, uds''') := test cr uds4 in
let (ok, uds') := (b && b', uds''') in put uds' >> Ret ok))) : M _); last first.
bind_ext => x.
case: safe1 => // h t.
by rewrite -bindA putgetput.
transitivity
(do
b' <- (do uds <- get ; let (ok, uds'') := safe1 uds crs in put uds'' >> Ret ok) ;
(do uds'''' <- get;
let (b, uds''') := test cr uds'''' in
let (ok, uds') := (b && b', uds''') in put uds' >> Ret ok) : M _)%Do; last first.
rewrite bindA; bind_ext => x.
case: safe1 => // h t.
by rewrite bindA; under eq_bind do rewrite bindretf.
by [].
Qed.
End statefully.
Arguments step2 {M}.
Arguments safe2 {M}.
Arguments start2 {M}.
Section safe_reification.
Variable M : stateReifyMonad (seq Z)`2.
Lemma reify_safe2 crs updowns : reify (safe2 crs : M _) updowns = Some (safe1 updowns crs).
Proof.
rewrite safe2E reifybind reifyget; case: safe1 => a b.
by rewrite reifybind reifyput reifyret.
Qed.
End safe_reification.
(* section 7.1 *)
Section queens_statefully_nondeterministically.
Local Open Scope do_notation.
Variable M : nondetStateMonad (seq Z)`2.
Definition queens_state_nondeter n : M (seq Z) :=
do s <- get ;
do rs <- perms (map Z_of_nat (iota 0 n));
put empty >>
(do ok <- safe2 (place n rs) ;
(put s >> guard ok)) >> Ret rs.
Lemma queensE n : queens n = queens_state_nondeter n.
Proof.
rewrite (getput_prepend (queens n)) /queens_state_nondeter; bind_ext => x.
rewrite {1}/queens putpermsC; bind_ext => y.
rewrite safe2E.
set f := (do ok <- (do _ <- _; _); _ >> guard ok in RHS).
rewrite (_ : f =
do uds <- get; put (safe1 uds (place n y)).2 >> Ret (safe1 uds (place n y)).1 >>
put x >> guard (safe1 uds (place n y)).1); last first.
rewrite {}/f bindA; bind_ext => u.
case: (safe1 _ _) => a b.
rewrite 2!bindA bindretf bindA.
by under eq_bind do rewrite bindretf.
rewrite assertE -bindA; congr (_ >> _).
rewrite -bindA.
rewrite putgetput.
rewrite 2!bindA.
rewrite bindretf.
rewrite -2!bindA.
by rewrite 2!putput.
Qed.
End queens_statefully_nondeterministically.
Arguments queens_state_nondeter {M}.
(* section 6.2 *)
Section queens_exploratively.
Local Open Scope do_notation.
Variable M : nondetStateMonad (seq Z)`2.
Definition queens_explor n : M _ :=
do s <- get;
do rs <- perms (map Z_of_nat (iota 0 n));
put empty >>
(do ok <- safe2 (place n rs) ;
(guard ok >> put s)) >> Ret rs.
Lemma queens_explorE n : queens_explor n = queens_state_nondeter n.
Proof.
rewrite /queens_explor /queens_state_nondeter.
bind_ext => x.
bind_ext => y.
rewrite 2!bindA.
bind_ext => z.
rewrite 2!bindA.
bind_ext => u.
rewrite guardsC; last exact: bindmfail.
rewrite 2!bindA.
by under eq_bind do rewrite assertE bindA bindretf.
Qed.
Definition safe3 crs : M _ := safe2 crs >>= fun b => guard b.
Definition queens_safe3 n : M _ :=
do s <- get;
(do rs <- perms (map Z_of_nat (iota 0 n)) ;
put empty >> safe3 (place n rs) >> put s >> Ret rs).
Lemma queens_safe3E n : queens_safe3 n = queens_explor n :> M _.
Proof.
rewrite /queens_safe3 /queens_explor; bind_ext => x.
bind_ext => y.
rewrite 3!bindA.
bind_ext; case.
rewrite !bindA.
by under [RHS]eq_bind do rewrite bindA.
Qed.
Definition step3 B cr (m : M B) := m >>
do uds <- get ; let (b, uds') := test cr uds in put uds' >> guard b.
Lemma safe3E crs :
safe3 crs = foldr (@step3 unit) skip crs :> M _.
Proof.
(* TODO(rei): how to write this proof w.o. the "set" and "transitivity"'s? *)
transitivity (((fun x => x >>= (guard : _ -> M _)) \o
(foldr step2 start2))
crs).
by [].
apply foldr_fusion_ext => [|cr {crs}k].
by rewrite /= /safe3 /= /start2 /= bindretf guardT.
transitivity ((do b' <- k ;
do uds <- get ;
let (b, uds') := test cr uds in
put uds' >> Ret (b && b')) >>= guard).
by rewrite /step2.
transitivity (do b' <- k ;
do uds <- get ;
let (b, uds') := test cr uds in
put uds' >> guard (b && b')).
(* by "do-notation" *)
rewrite bindA; bind_ext => x.
rewrite bindA; bind_ext => y.
case: (test cr y) => a b.
by rewrite bindA bindretf.
transitivity (do b' <- k ;
do uds <- get ;
let (b, uds') := test cr uds in
put uds' >> guard b >> guard b').
bind_ext => x.
bind_ext => y.
case: (test cr y) => a b.
by rewrite bindA guard_and.
transitivity (do b' <- k ;
guard b' >> (do uds <- get ;
let (b, uds') := test cr uds in
put uds' >> guard b)).
bind_ext => b'.
rewrite guardsC; last exact: bindmfail.
rewrite bindA.
bind_ext => x.
case: test => h t.
rewrite 2!bindA.
bind_ext; case.
rewrite -guard_and andbC guard_and guardsC //.
exact: bindmfail.
transitivity ((k >>= guard) >>
do uds <- get ;
let (b, uds') := test cr uds in
put uds' >> guard b).
by rewrite bindA.
by [].
Qed.
End queens_exploratively.
End nqueens_gibbons2011icfp.
Section nqueens_mu2019tr3.
Section queens_definition.
(* section 3.3 *)
Definition ups s i := zipWith Zplus (map Z_of_nat (iota i (size s))) s.
Definition downs s i := zipWith Zminus (map Z_of_nat (iota i (size s))) s.
Definition safe s := uniq (ups s 0) && uniq (downs s 0).
Definition queens_example := [:: 3; 5; 7; 1; 6; 0; 2; 4]%Z.
(*
Eval compute in safe queens_example.
*)
Definition mu_queens {M : nondetMonad} n : M (seq Z) :=
perms (map Z_of_nat (iota 0 n)) >>= assert safe.
Definition safeAcc i (us ds : seq Z) (xs : seq Z) :=
let us' := ups xs i in let ds' := downs xs i in
uniq us' && uniq ds' && all (fun x => x \notin us) us' && all (fun x => x \notin ds) ds'.
Lemma safeE : safe =1 safeAcc 0 [::] [::].
Proof.
move=> s; rewrite /safe /safeAcc.
by rewrite (sub_all _ (@all_predT _ _)) // (sub_all _ (@all_predT _ _)) // !andbT.
Qed.
Definition queens_ok (i_xus_yds : Z * seq Z * seq Z) :=
let: (_, xus, yds) := i_xus_yds in
match xus, yds with
| x :: us, y :: ds => (x \notin us) && (y \notin ds)
| _, _ => false
end.
Definition queens_next i_us_ds x :=
let: (i, us, ds) := i_us_ds in (i + 1, (i + x) :: us, (i - x) :: ds)%Z.
Definition safeAcc_scanl i (us ds : seq Z) :=
let ok i_xus_yds := queens_ok i_xus_yds in
let op i_us_ds x := queens_next i_us_ds x in
all ok \o scanl op (i, us, ds).
Lemma safeAccE i a b : safeAcc i a b =1 safeAcc_scanl (Z_of_nat i) a b.
Proof.
move=> s; elim: s i a b => // h t IH i a b.
rewrite /safeAcc_scanl /=.
move: (IH i.+1 ((Z.of_nat i + h) :: a) ((Z.of_nat i - h) :: b))%Z.
rewrite (_ : Z.of_nat i.+1 = (Z.of_nat i) + 1)%Z; last by rewrite -addn1 Nat2Z.inj_add.
rewrite /safeAcc_scanl => /= <-.
rewrite /safeAcc /= !andbA /zipWith /=.
set A := uniq _. set B := uniq _. set sa := map _ _. set sb := map _ _.
rewrite -![in LHS]andbA [in LHS]andbC.
do 2 rewrite -![in RHS]andbA [in RHS]andbC.
rewrite -!andbA; congr andb.
rewrite -[in LHS]andbC -!andbA; congr andb.
do 2 rewrite ![in RHS]andbA [in RHS]andbC.
congr andb.
rewrite [in LHS]andbCA -![in RHS]andbA; congr andb.
have H : forall (op : Z -> Z -> Z) y s, all (fun x : Z => x \notin op (Z_of_nat i) h :: y) s =
all (fun x : Z => x \notin y) s && (op (Z_of_nat i) h \notin s).
move=> op y; elim => //= s1 s2 ih /=; rewrite ih !inE !negb_or.
rewrite -andbA andbCA !andbA; congr (_ && _); rewrite -!andbA; congr(_ && _).
by rewrite andbC eq_sym.
by rewrite andbA andbCA -!andbA andbCA !andbA -H -andbA -H.
Qed.
Lemma mu_queensE {M : nondetMonad} n : mu_queens n =
perms (map Z_of_nat (iota 0 n)) >>= assert (safeAcc_scanl 0 [::] [::]) :> M _.
Proof.
rewrite /mu_queens; bind_ext => s.
by rewrite assertE (safeE s) safeAccE -assertE.
Qed.
End queens_definition.
Section section5a.
Variable M : nondetStateMonad (Z * seq Z * seq Z)%type.
Definition opdot_queens : Z -> M (seq Z) -> M (seq Z) := opdot queens_next queens_ok.
Lemma corollary45 s : assert (safeAcc_scanl 0 [::] [::]) s =
protect (put (0%Z, [::], [::]) >> foldr opdot_queens (Ret [::]) s).
Proof.
rewrite assert_all_scanl. (* NB: uses theorem 4.1 *)
rewrite /protect; bind_ext => st.
rewrite 3!bindA.
bind_ext; case.
by rewrite -theorem44 bindA.
Qed.
Definition queensBody (xs : seq Z) : M (seq Z) :=
perms xs >>= foldr opdot_queens (Ret [::]).
Lemma mu_queens_state_nondeter n : mu_queens n =
protect (put (0, [::], [::])%Z >> queensBody (map Z_of_nat (iota 0 n))).
Proof.
rewrite mu_queensE.
transitivity (perms (map Z.of_nat (iota 0 n)) >>= (fun xs =>
protect (put (0, [::], [::])%Z >> foldr opdot_queens (Ret [::]) xs))).
bind_ext => s /=.
exact: corollary45.
transitivity (protect (put (0, [::], [::])%Z >>
perms (map Z.of_nat (iota 0 n)) >>= foldr opdot_queens (Ret [::]))).
rewrite -getpermsC /protect; bind_ext => s.
rewrite !bindA putpermsC.
by under eq_bind do rewrite bindA.
rewrite /protect; bind_ext => st.
by rewrite !bindA.
Qed.
End section5a.
Definition seed_select {M : nondetStateMonad (Z * seq Z * seq Z)%type} :=
fun (p : pred (seq Z)) (f : seq Z -> M (Z * seq Z)%type)
(a b : seq Z) => size a < size b.
Section theorem51.
Local Open Scope do_notation.
Variables (M : nondetStateMonad (Z * seq Z * seq Z)%type).
Local Open Scope mprog.
Notation unfoldM := (unfoldM (@well_founded_size _)).
Let op := @opdot_queens M.
Let p := @nilp Z.
Lemma base_case y : p y -> (unfoldM p select >=> foldr op (Ret [::])) y = Ret [::].
Proof.
move=> py.
transitivity (Ret [::] >>= foldr op (Ret [::])).
rewrite /kleisli bindretf /= join_fmap unfoldME; last exact: decr_size_select.
by rewrite py bindretf.
by rewrite bindretf.
Qed.
Lemma theorem51 :
(unfoldM p select >=> foldr op (Ret [::])) =1
@hyloM _ _ _ _ op [::] p select seed_select (@well_founded_size _).
Proof.
apply: (well_founded_induction (@well_founded_size _)) => y IH.
rewrite hyloME; last exact: decr_size_select.
case/boolP : (p y) => py.
by rewrite base_case.
rewrite /kleisli /= join_fmap.
rewrite unfoldME; last exact: decr_size_select.
rewrite (negbTE py) bindA.
rewrite(@decr_size_select _ _) /bassert !bindA; bind_ext => -[b a] /=.
case: assertPn => ay; last by rewrite !bindfailf.
rewrite !bindretf /= -IH // bind_fmap /kleisli /= join_fmap.
suff : do x <- unfoldM p select a; op b (foldr op (Ret [::]) x) =
op b (do x <- unfoldM p select a; foldr op (Ret [::]) x) by [].
rewrite {ay}.
move: a b.
apply: (well_founded_induction (@well_founded_size _)) => a IH' b.
destruct a as [|u v] => //.
rewrite unfoldME /=; last exact: decr_size_select.
by rewrite !bindretf.
rewrite unfoldME; last exact: decr_size_select.
rewrite !bindA.
transitivity (do x <- Ret (u, v) [~] (do y_ys <- select v; Ret (y_ys.1, u :: y_ys.2));
op b (do x0 <- fmap (cons x.1) (unfoldM p select x.2); foldr op (Ret [::]) x0)); last first.
apply/esym.
rewrite {1}/op /opdot_queens /opdot fmap_bind.
transitivity (do st <- get;
(guard (queens_ok (queens_next st b)) >>
do x <- Ret (u, v) [~] (do y_ys <- select v; Ret (y_ys.1, u :: y_ys.2));
(put (queens_next st b)) >>
((cons b (o) (fun x => do x0 <- fmap (cons x.1) (unfoldM p select x.2);
foldr op (Ret [::]) x0)) x))).
bind_ext => st.
rewrite !bindA.
bind_ext; case.
by rewrite -nondetState_commute.
transitivity (do st <- get;
(do x <- Ret (u, v) [~] (do y_ys <- select v; Ret (y_ys.1, u :: y_ys.2)) : M _;
guard (queens_ok (queens_next st b)) >>
put (queens_next st b) >>
(cons b (o) (fun x0 => do x1 <- fmap (cons x0.1) (unfoldM p select x0.2); foldr op (Ret [::]) x1)) x)).
bind_ext => st.
rewrite -bindA guardsC; last exact: bindmfail.
rewrite !bindA.
bind_ext => x.
rewrite assertE !bindA.
bind_ext; case.
by rewrite bindretf.
rewrite -nondetState_commute//; last first.
(* TODO: automate? *)
case: (@select_isNondet _ M _ v) => x <-.
by exists (ndAlt (ndRet (u, v)) (ndBind x (fun y => ndRet (y.1, u :: y.2)))).
by rewrite fcomp_def.
bind_ext => x.
rewrite {1}/op /opdot_queens /opdot.
rewrite nondetState_commute; last first.
(* TODO: automate? *)
rewrite fmapE.
case: (unfoldM_isNondet (@select_isNondet _ M Z) (@decr_size_select M _) x.2).
move=> m <-.
by exists (ndBind m (fun y => ndRet (x.1 :: y))).
rewrite {2}/op /opdot_queens /opdot.
bind_ext => st.
rewrite nondetState_commute //; last first.
(* TODO: automate? *)
rewrite fmapE.
case: (unfoldM_isNondet (@select_isNondet _ M Z) (@decr_size_select _ _) x.2).
move=> m <-.
by exists (ndBind m (fun y => ndRet (x.1 :: y))).
bind_ext; case.
rewrite !bind_fmap !fmap_bind.
by under [RHS]eq_bind do rewrite fcomp_def.
Qed.
End theorem51.
Section section52.
Variables (M : nondetStateMonad (Z * seq Z * seq Z)%type).
Lemma queensBodyE : queensBody M =
hyloM (@opdot_queens M) [::] (@nilp _) select seed_select (@well_founded_size _).
Proof.
rewrite /queensBody boolp.funeqE => -[|h t].
- rewrite /= permsE /= hyloME ?bindretf //; exact: decr_size_select.
- by rewrite [h :: t]lock -theorem51 /kleisli /= join_fmap perms_uperm.
Qed.
Local Open Scope mprog.
(* last step of Section 5.2 *)
Lemma queensBodyE' xs : queensBody M xs = if xs is [::] then Ret [::] else
select xs >>= (fun xys =>
get >>= (fun st => guard (queens_ok (queens_next st xys.1)) >>
put (queens_next st xys.1) >> ((fmap (cons xys.1)) (queensBody M xys.2)))).
Proof.
case: xs => [|h t].
rewrite queensBodyE // hyloME //; exact: decr_size_select.
rewrite {1}queensBodyE hyloME; last exact: decr_size_select.
rewrite {-1}[h :: t]lock decr_size_select /bassert 2!bindA.
rewrite (_ : nilp _ = false) //.
bind_ext => -[x ys].
case: assertPn => /= ysht; last by rewrite !bindfailf.
rewrite !bindretf /opdot_queens /opdot.
bind_ext => st.
rewrite !bindA; bind_ext; case.
bind_ext; case.
by rewrite queensBodyE.
Qed.
End section52.
End nqueens_mu2019tr3.
Arguments opdot_queens {M}.