forked from IDRnD/antispoofing-features
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspectral_features.py
167 lines (135 loc) · 6.52 KB
/
spectral_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import json
import numpy as np
from tqdm import tqdm
from pathlib import Path, PosixPath
from multiprocessing import Pool
from librosa.feature.spectral import _spectrogram
from librosa.feature import tempogram, fourier_tempogram, melspectrogram, tonnetz
from librosa.feature import mfcc, chroma_stft, chroma_cqt, chroma_cens, poly_features
from tools.feature_extractor import SignalLoader, extract_spec_features
def calc_fbank(y: np.ndarray,
frame_len: int = 800,
shift: int = 400,
nfft: int = 512,
nfilt: int = 42,
sr: int = 16000,
pre_emphasis: float = 0.97,
normalize: bool = True,
eps: float = 1e-8):
"""
Calculates Filter banks from the input signal
Parameters:
y: np.ndarray - input signal
frame_len: float - length of the frame
shift: float - shift of the frames
nfft: int - number of dft point
nfilt: int - number of filters
sample_rate: int - sample rate of the input signal
pre_emphasis: float - preprocessing constant
normalize: bool - normalize fbank or not
eps: float - epsilon constant
Returns:
filter_banks: np.ndarray - filter banks
"""
emph_signal = np.append(y[0], y[1:] - pre_emphasis * y[:-1])
signal_len = len(emph_signal)
num_frames = int(np.ceil(np.abs(signal_len - frame_len) / shift))
pad_signal_len = num_frames * shift + frame_len
z = np.zeros((pad_signal_len - signal_len))
# Pad Signal to make sure that all frames have equal number
# of samples without truncating any samples from the original signal
pad_signal = np.append(emph_signal, z)
indices = np.tile(np.arange(0, frame_len), (num_frames, 1)) +\
np.tile(np.arange(0, num_frames * shift, shift), (frame_len, 1)).T
frames = pad_signal[indices.astype(np.int32, copy=False)]
# Hamming window
frames *= np.hamming(frame_len)
mag_frames = np.absolute(np.fft.rfft(frames, nfft))
pow_frames = (mag_frames)**2 / nfft
low_freq_mel = 0
high_freq_mel = (2595 * np.log10(1 + (sr / 2) / 700))
mel_points = np.linspace(low_freq_mel, high_freq_mel, nfilt + 2)
hz_points = (700 * (10**(mel_points / 2595) - 1))
bin = np.floor((nfft + 1) * hz_points / sr)
fbank = np.zeros((nfilt, int(np.floor(nfft / 2 + 1))))
for m in range(1, nfilt + 1):
f_m_minus = int(bin[m - 1]) # left
f_m = int(bin[m]) # center
f_m_plus = int(bin[m + 1]) # right
for k in range(f_m_minus, f_m):
fbank[m - 1, k] = (k - bin[m - 1]) / (bin[m] - bin[m - 1])
for k in range(f_m, f_m_plus):
fbank[m - 1, k] = (bin[m + 1] - k) / (bin[m + 1] - bin[m])
filter_banks = np.dot(pow_frames, fbank.T)
# numerical stability
filter_banks = np.where(filter_banks == 0, np.finfo(float).eps, filter_banks)
filter_banks = 20 * np.log10(filter_banks) # dB
if normalize:
filter_banks -= (np.mean(filter_banks, axis=0) + eps)
return filter_banks
SAMPLE_RATE = 16000
feature_functions = {
'spec': SignalLoader(_spectrogram, get_first=True),
'mfcc': SignalLoader(mfcc, abs_val=True, **{'sr': SAMPLE_RATE}),
'chroma_stft': SignalLoader(chroma_stft, **{'sr': SAMPLE_RATE}),
'chroma_cqt': SignalLoader(chroma_cqt, **{'sr': SAMPLE_RATE}),
'chroma_cens': SignalLoader(chroma_cens, **{'sr': SAMPLE_RATE}),
'mel_spec': SignalLoader(melspectrogram, **{'sr': SAMPLE_RATE}),
'tonnetz': SignalLoader(tonnetz, abs_val=True, **{'sr': SAMPLE_RATE}),
'poly': SignalLoader(poly_features, abs_val=True, **{'sr': SAMPLE_RATE, 'order': 5}),
'tempogram': SignalLoader(tempogram, abs_val=True, **{'sr': SAMPLE_RATE}),
'fourier_tempogram': SignalLoader(fourier_tempogram, abs_val=True, **{'sr': SAMPLE_RATE}),
'fbank': SignalLoader(calc_fbank, abs_val=True, **{'sr': SAMPLE_RATE})
}
def calc_spec_statistics(paths: list,
feature_name: str,
feature_config: dict,
feature_type: str,
save_path: PosixPath = None,
save_feature_names: bool = False):
"""
Calculates stat. features of the signal spectrum
Parameters:
paths: np.ndarray - paths to the audio files
feature_name: str - name of the processed spectral feature
feature_config: dict - configuration of processed spectral feature
feature_type: str - type of the processed feature (train, dev or val)
save_path: PosixPath - path for saving of calculated features
save_feature_names: bool - save names of calculated features or not
Returns:
statistics: np.ndarray - stat. features extracted from the spectrum of the signal
"""
assert feature_name in feature_functions.keys()
assert feature_type in ('train', 'dev', 'val')
statistics = []
stat_func = feature_functions[feature_name]
with tqdm(total=len(paths)) as pbar:
for spec in map(stat_func, paths):
features, names = extract_spec_features(spec, feature_config, prefix=feature_name)
statistics.append(features)
pbar.update()
if save_path is not None and save_feature_names:
(save_path / 'feature_names').mkdir(exist_ok=True, parents=True)
np.save(save_path / 'feature_names' / f'{feature_name}_names', names)
statistics = np.array(statistics, dtype=np.float32)
if save_path is not None:
(save_path / feature_type).mkdir(exist_ok=True, parents=True)
np.save(save_path / f'{feature_type}/{feature_name}', statistics)
return statistics
if __name__ == '__main__':
root_dir = Path(__file__).parent
file_path = root_dir / 'tests' / 'LA_T_1000137.flac'
config_path = root_dir / 'configs'
with open(config_path / 'spectral_features.json', 'r') as config:
spectral_features_config = json.load(config)
paths = [file_path]
feature_type = 'train'
for feature_name, feature_config in spectral_features_config.items():
statistics = calc_spec_statistics(paths=paths,
feature_name=feature_name,
feature_config=feature_config,
feature_type=feature_type)
statistics_test = np.load(root_dir / 'tests' / 'spectral_features' / f'LA_T_1000137_{feature_name}.npy')
assert np.all(statistics == statistics_test), f'Test for {feature_name} not passed'
print(feature_name, statistics.shape)
print('OK')