forked from facebookresearch/pytorchvideo
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_data_domsev_dataset.py
230 lines (209 loc) · 8.69 KB
/
test_data_domsev_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import tempfile
import unittest
import unittest.mock
from contextlib import ExitStack
from pathlib import Path
import torch
from parameterized import parameterized
from pytorchvideo.data.dataset_manifest_utils import VideoClipInfo, VideoDatasetType
from pytorchvideo.data.domsev import (
LabelData,
DomsevVideoDataset,
_get_overlap_for_time_range_pair,
_seconds_to_frame_index,
)
from pytorchvideo.data.utils import save_dataclass_objs_to_headered_csv
from utils import (
MOCK_VIDEO_IDS,
MOCK_VIDEO_INFOS,
get_encoded_video_infos,
get_flat_video_frames,
)
class TestDomsevVideoDataset(unittest.TestCase):
# video_id: str
# start_time: float # Start time of the label, in seconds
# stop_time: float # Stop time of the label, in seconds
# start_frame: int # 0-indexed ID of the start frame (inclusive)
# stop_frame: int # 0-index ID of the stop frame (inclusive)
# label_id: int
# label_name: str
LABELS_DATA = {
MOCK_VIDEO_IDS[0]: [
LabelData(
MOCK_VIDEO_IDS[0],
0.0,
6.0,
1,
181,
1,
"walking",
),
LabelData(
MOCK_VIDEO_IDS[0],
6.0333333,
10.0,
182,
301,
2,
"running",
),
LabelData(
MOCK_VIDEO_IDS[0],
10.033333,
20.0,
302,
601,
0,
"none",
),
],
MOCK_VIDEO_IDS[1]: [
LabelData(
MOCK_VIDEO_IDS[1],
3.0,
5.0,
181,
301,
7,
"cooking",
),
],
MOCK_VIDEO_IDS[2]: [
LabelData(
MOCK_VIDEO_IDS[2],
100.0,
200.0,
3001,
6001,
9,
"observing",
),
],
MOCK_VIDEO_IDS[3]: [
LabelData(
MOCK_VIDEO_IDS[3],
10.0,
20.0,
901,
1801,
5,
"driving",
),
],
}
def setUp(self):
pass
def test_seconds_to_frame_index(self):
self.assertEqual(_seconds_to_frame_index(10.56, 1, zero_indexed=True), 10)
self.assertEqual(_seconds_to_frame_index(10.56, 1, zero_indexed=False), 11)
self.assertEqual(_seconds_to_frame_index(9.99, 1, zero_indexed=True), 9)
self.assertEqual(_seconds_to_frame_index(9.99, 1, zero_indexed=False), 10)
self.assertEqual(_seconds_to_frame_index(1.01, 10, zero_indexed=True), 10)
self.assertEqual(_seconds_to_frame_index(1.01, 10, zero_indexed=False), 11)
def test_get_overlap_for_time_range_pair(self):
self.assertEqual(_get_overlap_for_time_range_pair(0, 1, 0.1, 0.2), (0.1, 0.2))
self.assertEqual(_get_overlap_for_time_range_pair(0.1, 0.2, 0, 1), (0.1, 0.2))
self.assertEqual(_get_overlap_for_time_range_pair(0, 1, 0.9, 1.1), (0.9, 1.0))
self.assertEqual(_get_overlap_for_time_range_pair(0, 0.2, 0.1, 1), (0.1, 0.2))
@parameterized.expand([(VideoDatasetType.Frame,), (VideoDatasetType.EncodedVideo,)])
def test__len__(self, dataset_type):
with tempfile.TemporaryDirectory(prefix=f"{TestDomsevVideoDataset}") as tempdir:
tempdir = Path(tempdir)
video_info_file = tempdir / "test_video_info.csv"
save_dataclass_objs_to_headered_csv(
list(MOCK_VIDEO_INFOS.values()), video_info_file
)
label_file = tempdir / "activity_video_info.csv"
labels = []
for label_list in self.LABELS_DATA.values():
for label_data in label_list:
labels.append(label_data)
save_dataclass_objs_to_headered_csv(labels, label_file)
video_data_manifest_file_path = (
tempdir / "video_data_manifest_file_path.json"
)
with ExitStack() as stack:
if dataset_type == VideoDatasetType.Frame:
video_data_dict = get_flat_video_frames(tempdir, "jpg")
elif dataset_type == VideoDatasetType.EncodedVideo:
video_data_dict = get_encoded_video_infos(tempdir, stack)
save_dataclass_objs_to_headered_csv(
list(video_data_dict.values()), video_data_manifest_file_path
)
video_ids = list(self.LABELS_DATA)
dataset = DomsevVideoDataset(
video_data_manifest_file_path=str(video_data_manifest_file_path),
video_info_file_path=str(video_info_file),
labels_file_path=str(label_file),
dataset_type=dataset_type,
clip_sampler=lambda x, y: [
VideoClipInfo(video_ids[i // 2], i * 2.0, i * 2.0 + 0.9)
for i in range(0, 7)
],
)
self.assertEqual(len(dataset._videos), 4)
total_labels = [
label_data
for video_labels in list(dataset._labels_per_video.values())
for label_data in video_labels
]
self.assertEqual(len(total_labels), 6)
self.assertEqual(len(dataset), 7) # Num clips
@parameterized.expand([(VideoDatasetType.Frame,), (VideoDatasetType.EncodedVideo,)])
def test__getitem__(self, dataset_type):
with tempfile.TemporaryDirectory(prefix=f"{TestDomsevVideoDataset}") as tempdir:
tempdir = Path(tempdir)
video_info_file = tempdir / "test_video_info.csv"
save_dataclass_objs_to_headered_csv(
list(MOCK_VIDEO_INFOS.values()), video_info_file
)
label_file = tempdir / "activity_video_info.csv"
labels = []
for label_list in self.LABELS_DATA.values():
for label_data in label_list:
labels.append(label_data)
save_dataclass_objs_to_headered_csv(labels, label_file)
video_data_manifest_file_path = (
tempdir / "video_data_manifest_file_path.json"
)
with ExitStack() as stack:
if dataset_type == VideoDatasetType.Frame:
video_data_dict = get_flat_video_frames(tempdir, "jpg")
elif dataset_type == VideoDatasetType.EncodedVideo:
video_data_dict = get_encoded_video_infos(tempdir, stack)
save_dataclass_objs_to_headered_csv(
list(video_data_dict.values()), video_data_manifest_file_path
)
video_ids = list(self.LABELS_DATA)
dataset = DomsevVideoDataset(
video_data_manifest_file_path=str(video_data_manifest_file_path),
video_info_file_path=str(video_info_file),
labels_file_path=str(label_file),
dataset_type=dataset_type,
clip_sampler=lambda x, y: [
VideoClipInfo(video_ids[i // 2], i * 2.0, i * 2.0 + 0.9)
for i in range(0, 7)
],
)
get_clip_string = (
"pytorchvideo.data.frame_video.FrameVideo.get_clip"
if dataset_type == VideoDatasetType.Frame
else "pytorchvideo.data.encoded_video.EncodedVideo.get_clip"
)
with unittest.mock.patch(
get_clip_string,
return_value=({"video": torch.rand(3, 5, 10, 20), "audio": []}),
) as _:
clip_1 = dataset.__getitem__(1)
for i, a in enumerate(clip_1["labels"]):
self.assertEqual(a, self.LABELS_DATA[video_ids[0]][i])
self.assertEqual(clip_1["start_time"], 2.0)
self.assertEqual(clip_1["stop_time"], 2.9)
self.assertEqual(clip_1["video_id"], MOCK_VIDEO_IDS[0])
clip_2 = dataset.__getitem__(2)
for i, a in enumerate(clip_2["labels"]):
self.assertEqual(a, self.LABELS_DATA[video_ids[1]][i])
self.assertEqual(clip_2["start_time"], 4.0)
self.assertEqual(clip_2["stop_time"], 4.9)
self.assertEqual(clip_2["video_id"], MOCK_VIDEO_IDS[1])