forked from facebookresearch/pytorchvideo
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_data_epic_kitchen_recognition.py
166 lines (146 loc) · 5.87 KB
/
test_data_epic_kitchen_recognition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import unittest
import unittest.mock
import torch
from pytorchvideo.data import EpicKitchenRecognition
from pytorchvideo.data.epic_kitchen import ActionData
from pytorchvideo.data.epic_kitchen_recognition import ClipSampling
from pytorchvideo.data.frame_video import FrameVideo
class TestEpicKitchenRecognition(unittest.TestCase):
def test_transform_generator(self):
clip = {
"start_time": 2.5,
"stop_time": 6.5,
"video": torch.rand(3, 4, 10, 20),
"actions": [
ActionData(
"P01",
"P01_01",
"turn off light",
"00:00:01.00",
"00:00:02.00",
262,
370,
"turn-off",
12,
"light",
113,
"['light']",
"[113]",
),
ActionData(
"P01",
"P01_01",
"turn on light",
"00:00:04.00",
"00:00:06.00",
262,
370,
"turn-on",
12,
"light",
113,
"['light']",
"[113]",
),
ActionData(
"P01",
"P01_01",
"close door",
"00:00:06.00",
"00:00:07.00",
418,
569,
"close",
3,
"door",
8,
"['door']",
"[8]",
),
ActionData(
"P01",
"P01_01",
"slam door",
"00:00:10.00",
"00:00:11.00",
408,
509,
"slam",
3,
"door",
8,
"['door']",
"[8]",
),
],
}
def additional_transform(clip):
clip["video"] = clip["video"].permute(1, 2, 3, 0)
return clip
transform_fn = EpicKitchenRecognition._transform_generator(additional_transform)
transformed_clip = transform_fn(clip)
self.assertEqual(len(transformed_clip["actions"]), 2)
# Sort for stability
sorted_actions = sorted(transformed_clip["actions"], key=lambda a: a.start_time)
self.assertEqual(sorted_actions[0].narration, "turn on light")
self.assertEqual(sorted_actions[1].narration, "close door")
self.assertEqual(transformed_clip["start_time"], 2.5)
self.assertEqual(transformed_clip["stop_time"], 6.5)
self.assertEqual(transformed_clip["video"].size(), torch.Size([4, 10, 20, 3]))
def test_frame_filter_generator(self):
input_list = list(range(10))
frame_filter_fn = EpicKitchenRecognition._frame_filter_generator(10)
all_elements = frame_filter_fn(input_list)
self.assertEqual(all_elements, input_list)
frame_filter_fn = EpicKitchenRecognition._frame_filter_generator(5)
half_elements = frame_filter_fn(input_list)
self.assertEqual(len(half_elements), 5)
self.assertEqual(half_elements, [i for i in input_list if not i % 2])
frame_filter_fn = EpicKitchenRecognition._frame_filter_generator(1)
half_elements = frame_filter_fn(input_list)
self.assertEqual(len(half_elements), 1)
self.assertEqual(half_elements[0], 0)
def test_define_clip_structure_generator(self):
seconds_per_clip = 5
define_clip_structure_fn = (
EpicKitchenRecognition._define_clip_structure_generator(
seconds_per_clip=5, clip_sampling=ClipSampling.RandomOffsetUniform
)
)
frame_videos = {
"P01_003": FrameVideo.from_frame_paths(
[f"root/P01_003/frame_{i}" for i in range(100)], 10
),
"P02_004": FrameVideo.from_frame_paths(
[f"root/P02_004/frame_{i}" for i in range(300)], 10
),
"P11_010": FrameVideo.from_frame_paths(
[f"root/P11_010/frame_{i}" for i in range(600)], 30
),
}
actions = {video_id: [] for video_id in frame_videos}
random_value = 0.5
with unittest.mock.patch("random.random", return_value=random_value) as _:
clips = define_clip_structure_fn(frame_videos, actions)
sorted_clips = sorted(clips, key=lambda c: c.start_time) # For stability
for clip in sorted_clips:
self.assertEqual(clip.stop_time - clip.start_time, seconds_per_clip)
clips_P01_003 = [c for c in sorted_clips if c.video_id == "P01_003"]
self.assertEqual(len(clips_P01_003), 1)
for i in range(len(clips_P01_003)):
self.assertEqual(
clips_P01_003[i].start_time, seconds_per_clip * (i + random_value)
)
clips_P02_004 = [c for c in sorted_clips if c.video_id == "P02_004"]
self.assertEqual(len(clips_P02_004), 5)
for i in range(len(clips_P02_004)):
self.assertEqual(
clips_P02_004[i].start_time, seconds_per_clip * (i + random_value)
)
clips_P11_010 = [c for c in sorted_clips if c.video_id == "P11_010"]
self.assertEqual(len(clips_P11_010), 3)
for i in range(len(clips_P11_010)):
self.assertEqual(
clips_P11_010[i].start_time, seconds_per_clip * (i + random_value)
)