forked from facebookresearch/pytorchvideo
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_layers_nonlocal_net.py
159 lines (145 loc) · 5.6 KB
/
test_layers_nonlocal_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import itertools
import unittest
from typing import Iterable
import numpy as np
import torch
from pytorchvideo.layers.nonlocal_net import NonLocal, create_nonlocal
from torch import nn
class TestNonlocal(unittest.TestCase):
def setUp(self):
super().setUp()
torch.set_rng_state(torch.manual_seed(42).get_state())
def test_build_nonlocal(self):
"""
Test Nonlocal model builder.
"""
for dim_in, dim_inner, pool, norm, instantiation in itertools.product(
(4, 8),
(2, 4),
(None, nn.MaxPool3d(2)),
(None, nn.BatchNorm3d),
("dot_product", "softmax"),
):
model = NonLocal(
conv_theta=nn.Conv3d(
dim_in, dim_inner, kernel_size=1, stride=1, padding=0
),
conv_phi=nn.Conv3d(
dim_in, dim_inner, kernel_size=1, stride=1, padding=0
),
conv_g=nn.Conv3d(dim_in, dim_inner, kernel_size=1, stride=1, padding=0),
conv_out=nn.Conv3d(
dim_inner, dim_in, kernel_size=1, stride=1, padding=0
),
pool=pool,
norm=norm(dim_in) if norm is not None else None,
instantiation=instantiation,
)
# Test forwarding.
for input_tensor in TestNonlocal._get_inputs(input_dim=dim_in):
if input_tensor.shape[1] != dim_in:
with self.assertRaises(RuntimeError):
output_tensor = model(input_tensor)
continue
else:
output_tensor = model(input_tensor)
input_shape = input_tensor.shape
output_shape = output_tensor.shape
self.assertEqual(
input_shape,
output_shape,
"Input shape {} is different from output shape {}".format(
input_shape, output_shape
),
)
def test_nonlocal_builder(self):
"""
Test builder `create_nonlocal`.
"""
for dim_in, dim_inner, pool_size, norm, instantiation in itertools.product(
(4, 8),
(2, 4),
((1, 1, 1), (2, 2, 2)),
(None, nn.BatchNorm3d),
("dot_product", "softmax"),
):
conv_theta = nn.Conv3d(
dim_in, dim_inner, kernel_size=1, stride=1, padding=0
)
conv_phi = nn.Conv3d(dim_in, dim_inner, kernel_size=1, stride=1, padding=0)
conv_g = nn.Conv3d(dim_in, dim_inner, kernel_size=1, stride=1, padding=0)
conv_out = nn.Conv3d(dim_inner, dim_in, kernel_size=1, stride=1, padding=0)
if norm is None:
norm_model = None
else:
norm_model = norm(num_features=dim_in)
if isinstance(pool_size, Iterable) and any(size > 1 for size in pool_size):
pool_model = nn.MaxPool3d(
kernel_size=pool_size, stride=pool_size, padding=[0, 0, 0]
)
else:
pool_model = None
model = create_nonlocal(
dim_in=dim_in,
dim_inner=dim_inner,
pool_size=pool_size,
instantiation=instantiation,
norm=norm,
)
model_gt = NonLocal(
conv_theta=conv_theta,
conv_phi=conv_phi,
conv_g=conv_g,
conv_out=conv_out,
pool=pool_model,
norm=norm_model,
instantiation=instantiation,
)
model.load_state_dict(
model_gt.state_dict(), strict=True
) # explicitly use strict mode.
# Test forwarding.
for input_tensor in TestNonlocal._get_inputs(input_dim=dim_in):
with torch.no_grad():
if input_tensor.shape[1] != dim_in:
with self.assertRaises(RuntimeError):
output_tensor = model(input_tensor)
continue
else:
output_tensor = model(input_tensor)
output_tensor_gt = model_gt(input_tensor)
self.assertEqual(
output_tensor.shape,
output_tensor_gt.shape,
"Output shape {} is different from expected shape {}".format(
output_tensor.shape, output_tensor_gt.shape
),
)
self.assertTrue(
np.allclose(output_tensor.numpy(), output_tensor_gt.numpy())
)
@staticmethod
def _get_inputs(input_dim: int = 8) -> torch.tensor:
"""
Provide different tensors as test cases.
Yield:
(torch.tensor): tensor as test case input.
"""
# Prepare random tensor as test cases.
shapes = (
# Forward succeeded.
(1, input_dim, 5, 7, 7),
(2, input_dim, 5, 7, 7),
(4, input_dim, 5, 7, 7),
(4, input_dim, 5, 7, 7),
(4, input_dim, 7, 7, 7),
(4, input_dim, 7, 7, 14),
(4, input_dim, 7, 14, 7),
(4, input_dim, 7, 14, 14),
# Forward failed.
(8, input_dim * 2, 3, 7, 7),
(8, input_dim * 4, 5, 7, 7),
)
for shape in shapes:
yield torch.rand(shape)