-
-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathexample.py
79 lines (61 loc) · 3.47 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import numpy
import imageio
import gari
import pygad
import matplotlib.pyplot
"""
GARI (Genetic Algorithm for Reproducing Images) is a Python project that uses the PyGAD library for reproducing images using the genetic algorithm. GARI reproduces a single image using Genetic Algorithm (GA) by evolving pixel values.
For implementing the genetic algorithm, the PyGAD library is used. Check its documentation here: https://pygad.readthedocs.io
This project works with both color and gray images without any modifications.
This project is implemented using Python 3.5 by Ahmed Fawzy Gad.
Contact info:
https://www.linkedin.com/in/ahmedfgad/
"""
# Reading target image to be reproduced using Genetic Algorithm (GA).
target_im = imageio.imread('fruit.jpg')
target_im = numpy.asarray(target_im/255, dtype=numpy.float)
# Target image after enconding. Value encoding is used.
target_chromosome = gari.img2chromosome(target_im)
def fitness_fun(solution, solution_idx):
"""
Calculating the fitness value for a solution in the population.
The fitness value is calculated using the sum of absolute difference between genes values in the original and reproduced chromosomes.
solution: Current solution in the population to calculate its fitness.
solution_idx: Index of the solution within the population.
"""
fitness = numpy.sum(numpy.abs(target_chromosome-solution))
# Negating the fitness value to make it increasing rather than decreasing.
fitness = numpy.sum(target_chromosome) - fitness
return fitness
def callback(ga_instance):
print("Generation = {gen}".format(gen=ga_instance.generations_completed))
print("Fitness = {fitness}".format(fitness=ga_instance.best_solution()[1]))
if ga_instance.generations_completed % 500 == 0:
matplotlib.pyplot.imsave('solution_'+str(ga_instance.generations_completed)+'.png', gari.chromosome2img(ga_instance.best_solution()[0], target_im.shape))
ga_instance = pygad.GA(num_generations=20000,
num_parents_mating=10,
fitness_func=fitness_fun,
sol_per_pop=20,
num_genes=target_im.size,
init_range_low=0.0,
init_range_high=1.0,
mutation_percent_genes=0.01,
mutation_type="random",
mutation_by_replacement=True,
random_mutation_min_val=0.0,
random_mutation_max_val=1.0,
callback_generation=callback)
ga_instance.run()
# After the generations complete, some plots are showed that summarize the how the outputs/fitenss values evolve over generations.
ga_instance.plot_result()
# Returning the details of the best solution.
solution, solution_fitness, solution_idx = ga_instance.best_solution()
print("Fitness value of the best solution = {solution_fitness}".format(solution_fitness=solution_fitness))
print("Index of the best solution : {solution_idx}".format(solution_idx=solution_idx))
if ga_instance.best_solution_generation != -1:
print("Best fitness value reached after {best_solution_generation} generations.".format(best_solution_generation=ga_instance.best_solution_generation))
result = gari.chromosome2img(solution, target_im.shape)
matplotlib.pyplot.imshow(result)
matplotlib.pyplot.title("PyGAD & GARI for Reproducing Images")
matplotlib.pyplot.show()