-
Notifications
You must be signed in to change notification settings - Fork 310
/
Copy pathtrain_2_1_unclip.py
75 lines (71 loc) · 3.28 KB
/
train_2_1_unclip.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import sys
from PIL import Image
import torch
from kandinsky2.model.model_creation import create_model, create_gaussian_diffusion
from kandinsky2.train_utils.train_module_pl2_1 import Decoder
import argparse
import os
from argparse import ArgumentParser
import pytorch_lightning as pl
from kandinsky2.train_utils.data.dataset_unclip_2_1 import create_loader
from kandinsky2.train_utils.utils import freeze_decoder
from kandinsky2.model.text_encoders import TextEncoder
from kandinsky2.model.utils import get_obj_from_str
from kandinsky2.vqgan.autoencoder import VQModelInterface, AutoencoderKL, MOVQ
from kandinsky2.train_utils.trainer_2_1_uclip import train_unclip
from kandinsky2.model.resample import UniformSampler
from omegaconf import OmegaConf
import clip
import argparse
def drop_first_layer(path):
d = {}
state_dict = torch.load(path)
for key in state_dict.keys():
if key != 'input_blocks.0.0.weight':
d[key] = state_dict[key]
return d
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, help='config path')
args = parser.parse_args()
config = OmegaConf.load(args.config)
device = config['device']
model = create_model(**config['model_config'])
diffusion = create_gaussian_diffusion(**config['diffusion_config'])
print('start loading')
if config['params_path'] != '':
if config['drop_first_layer']:
model.load_state_dict(drop_first_layer(config['params_path']), strict=False)
else:
model.load_state_dict(torch.load(config['params_path']))
model = freeze_decoder(model, **config['freeze']).to(device)
train_loader = create_loader(**config['data']['train'])
image_encoder = MOVQ(**config['image_enc_params']["params"]).half()
image_encoder.load_state_dict(torch.load(config['image_enc_params']["ckpt_path"]))
image_encoder = image_encoder.eval().to(device)
schedule_sampler = UniformSampler(diffusion)
text_encoder = TextEncoder(**config['text_enc_params']).eval().half().to(device)
optimizer = get_obj_from_str(config['optim_params']["name"])(
model.parameters(), **config['optim_params']["params"]
)
if 'scheduler_params' in config:
lr_scheduler = get_obj_from_str(config['scheduler_params']["name"])(
optimizer, **config['scheduler_params']["params"]
)
else:
lr_scheduler = None
clip_model, _ = clip.load(config['clip_name'], device="cpu", jit=False)
clip_model.transformer = None
clip_model.positional_embedding = None
clip_model.ln_final = None
clip_model.token_embedding = None
clip_model.text_projection = None
clip_model = clip_model.eval().to(device)
train_unclip(unet=model, diffusion=diffusion, image_encoder=image_encoder,
clip_model=clip_model, text_encoder=text_encoder, optimizer=optimizer,
lr_scheduler=lr_scheduler, schedule_sampler=schedule_sampler,
train_loader=train_loader, val_loader=None, scale=config['image_enc_params']['scale'],
num_epochs=config['num_epochs'], save_every=config['save_every'], save_name=config['save_name'],
save_path=config['save_path'], inpainting=config['inpainting'], device=device)
if __name__ == '__main__':
main()