-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpredict.py
131 lines (112 loc) · 4.6 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import os
import argparse
import json
from evaluation import dataset_loader, model_loader, answer_generator
from configparser import ConfigParser
from huggingface_hub import login
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-c", "--config", help="Enter config path", required=True)
parser.add_argument("-t", "--token", help="Enter Hugging Face token")
args = parser.parse_args()
if args.token:
login(token=args.token)
config = ConfigParser()
config.read(args.config)
datasets_names = json.loads(config.get("parameters", "datasets"))
context_lengths = json.loads(config.get("parameters", "context_lengths"))
max_context_length = int(config.get("parameters", "max_context_length"))
model_path = config.get("parameters", "model_path")
tokenizer_path = config.get("parameters", "tokenizer_path")
model_torch_dtype = config.get("parameters", "model_torch_dtype")
device = config.get("parameters", "device")
save_path = config.get("parameters", "save_path")
if config.has_option("parameters", "chat_model"):
chat_model = config.get("parameters", "chat_model") == "True"
else:
chat_model = False
if config.has_option("parameters", "sys_prompt"):
sys_prompt = config.get("parameters", "sys_prompt")
else:
sys_prompt = None
if config.has_option("parameters", "engine"):
engine = config.get("parameters", "engine")
else:
engine = "hf"
if config.has_option("parameters", "tensor_parallel_size"):
tensor_parallel_size = int(config.get("parameters", "tensor_parallel_size"))
else:
tensor_parallel_size = 1
if config.has_option("parameters", "gpu_memory_utilization"):
gpu_memory_utilization = float(
config.get("parameters", "gpu_memory_utilization")
)
else:
gpu_memory_utilization = 0.9
if engine == "hf":
model_loader = model_loader.ModelLoader(
model_path=model_path,
model_torch_dtype=model_torch_dtype,
tokenizer_path=tokenizer_path,
device=device,
)
elif engine == "vllm":
model_loader = model_loader.vLLM_ModelLoader(
model_path=model_path,
model_torch_dtype=model_torch_dtype,
tokenizer_path=tokenizer_path,
gpu_memory_utilization=gpu_memory_utilization,
tensor_parallel_size=tensor_parallel_size,
device=device,
)
else:
raise Exception('Engine should be "hf" or "vllm"')
model, tokenizer = model_loader.model_load()
datasets_params = json.load(
open("configs/datasets_config.json", "r", encoding="utf-8")
)
if "all" in datasets_names:
datasets_names = list(datasets_params.keys())
print("Your model is evaluating on next tasks: ", datasets_names)
results = {}
for dataset_name in datasets_names:
print(dataset_name)
data_loader = dataset_loader.DatasetLoader(dataset_name=dataset_name)
dataset = data_loader.dataset_load()
max_new_tokens = int(datasets_params[dataset_name]["max_new_tokens"])
instruction = datasets_params[dataset_name]["instruction"]
if engine == "hf":
pred_generator = answer_generator.AnswerGenerator(
model=model,
tokenizer=tokenizer,
device=device,
dataset=dataset,
instruction=instruction,
context_lengths=context_lengths,
max_context_length=max_context_length,
max_new_tokens=max_new_tokens,
chat_model=chat_model,
sys_prompt=sys_prompt,
)
elif engine == "vllm":
pred_generator = answer_generator.vLLM_AnswerGenerator(
model=model,
tokenizer=tokenizer,
device=device,
dataset=dataset,
instruction=instruction,
context_lengths=context_lengths,
max_context_length=max_context_length,
max_new_tokens=max_new_tokens,
chat_model=chat_model,
sys_prompt=sys_prompt,
)
else:
raise Exception('Engine should be "hf" or "vllm"')
generated_answers = pred_generator.generate_answers()
results[dataset_name] = generated_answers
if not os.path.exists(save_path.split("/")[0]):
os.makedirs(save_path.split("/")[0])
with open(save_path, "w") as outfile:
json.dump(results, outfile)
print(f"predictions were saved here: {save_path}")