-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdemo.py
283 lines (236 loc) · 9.12 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import argparse
import sys
import time
from collections import deque
from multiprocessing import Manager, Process, Value
from typing import Optional, Tuple
import onnxruntime as ort
from loguru import logger
ort.set_default_logger_severity(4) # NOQA
logger.add(sys.stdout, format="{level} | {message}") # NOQA
logger.remove(0) # NOQA
import cv2
import numpy as np
from omegaconf import OmegaConf
from constants import classes
class BaseRecognition:
def __init__(self, model_path: str, tensors_list, prediction_list, verbose):
self.verbose = verbose
self.started = None
self.output_names = None
self.input_shape = None
self.input_name = None
self.session = None
self.model_path = model_path
self.window_size = None
self.tensors_list = tensors_list
self.prediction_list = prediction_list
def clear_tensors(self):
"""
Clear the list of tensors.
"""
for _ in range(self.window_size):
self.tensors_list.pop(0)
def run(self):
"""
Run the recognition model.
"""
if self.session is None:
self.session = ort.InferenceSession(self.model_path)
self.input_name = self.session.get_inputs()[0].name
self.input_shape = self.session.get_inputs()[0].shape
self.window_size = self.input_shape[1]
self.output_names = [output.name for output in self.session.get_outputs()]
if len(self.tensors_list) >= self.input_shape[1]:
input_tensor = np.stack(self.tensors_list[: self.window_size], axis=0)[None]
print(input_tensor.shape)
st = time.time()
outputs = self.session.run(self.output_names, {self.input_name: input_tensor.astype(np.float32)})[0]
et = round(time.time() - st, 3)
gloss = str(classes[outputs.argmax()])
if gloss != self.prediction_list[-1] and len(self.prediction_list):
if gloss != "---":
self.prediction_list.append(gloss)
self.clear_tensors()
if self.verbose:
logger.info(f"- Prediction time {et}, new gloss: {gloss}")
logger.info(f" --- {len(self.tensors_list)} frames in queue")
def kill(self):
pass
class Recognition(BaseRecognition):
def __init__(self, model_path: str, tensors_list: list, prediction_list: list, verbose: bool):
"""
Initialize recognition model.
Parameters
----------
model_path : str
Path to the model.
tensors_list : List
List of tensors to be used for prediction.
prediction_list : List
List of predictions.
Notes
-----
The recognition model is run in a separate process.
"""
super().__init__(
model_path=model_path, tensors_list=tensors_list, prediction_list=prediction_list, verbose=verbose
)
self.started = True
def start(self):
self.run()
class RecognitionMP(Process, BaseRecognition):
def __init__(self, model_path: str, tensors_list, prediction_list, verbose):
"""
Initialize recognition model.
Parameters
----------
model_path : str
Path to the model.
tensors_list : Manager.list
List of tensors to be used for prediction.
prediction_list : Manager.list
List of predictions.
Notes
-----
The recognition model is run in a separate process.
"""
super().__init__()
BaseRecognition.__init__(
self, model_path=model_path, tensors_list=tensors_list, prediction_list=prediction_list, verbose=verbose
)
self.started = Value("i", False)
def run(self):
while True:
BaseRecognition.run(self)
self.started = True
class Runner:
STACK_SIZE = 6
def __init__(
self,
model_path: str,
config: OmegaConf = None,
mp: bool = False,
verbose: bool = False,
length: int = STACK_SIZE,
) -> None:
"""
Initialize runner.
Parameters
----------
model_path : str
Path to the model.
config : OmegaConf
Configuration file.
length : int
Deque length for predictions
Notes
-----
The runner uses multiprocessing to run the recognition model in a separate process.
"""
self.multiprocess = mp
self.cap = cv2.VideoCapture(0)
self.manager = Manager() if self.multiprocess else None
self.tensors_list = self.manager.list() if self.multiprocess else []
self.prediction_list = self.manager.list() if self.multiprocess else []
self.prediction_list.append("---")
self.frame_counter = 0
self.frame_interval = config.frame_interval
self.length = length
self.prediction_classes = deque(maxlen=length)
self.mean = config.mean
self.std = config.std
if self.multiprocess:
self.recognizer = RecognitionMP(model_path, self.tensors_list, self.prediction_list, verbose)
else:
self.recognizer = Recognition(model_path, self.tensors_list, self.prediction_list, verbose)
def add_frame(self, image):
"""
Add frame to queue.
Parameters
----------
image : np.ndarray
Frame to be added.
"""
self.frame_counter += 1
if self.frame_counter == self.frame_interval:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = self.resize(image, (224, 224))
image = (image - self.mean) / self.std
image = np.transpose(image, [2, 0, 1])
self.tensors_list.append(image)
self.frame_counter = 0
@staticmethod
def resize(im, new_shape=(224, 224)):
"""
Resize and pad image while preserving aspect ratio.
Parameters
----------
im : np.ndarray
Image to be resized.
new_shape : Tuple[int]
Size of the new image.
Returns
-------
np.ndarray
Resized image.
"""
shape = im.shape[:2] # current shape [height, width]
if isinstance(new_shape, int):
new_shape = (new_shape, new_shape)
# Scale ratio (new / old)
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
# Compute padding
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
dw /= 2
dh /= 2
if shape[::-1] != new_unpad: # resize
im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114)) # add border
return im
def run(self):
"""
Run the runner.
Notes
-----
The runner will run until the user presses 'q'.
"""
if self.multiprocess:
self.recognizer.start()
while self.cap.isOpened():
if self.recognizer.started:
_, frame = self.cap.read()
text_div = np.zeros((50, frame.shape[1], 3), dtype=np.uint8)
self.add_frame(frame)
if not self.multiprocess:
self.recognizer.start()
if self.prediction_list:
text = " ".join(self.prediction_list)
cv2.putText(text_div, text, (10, 30), cv2.FONT_HERSHEY_COMPLEX, 0.7, (255, 255, 255), 2)
if len(self.prediction_list) > self.length:
self.prediction_list.pop(0)
frame = np.concatenate((frame, text_div), axis=0)
cv2.imshow("frame", frame)
condition = cv2.waitKey(10) & 0xFF
if condition in {ord("q"), ord("Q"), 27}:
if self.multiprocess:
self.recognizer.kill()
self.cap.release()
cv2.destroyAllWindows()
break
def parse_arguments(params: Optional[Tuple] = None) -> argparse.Namespace:
parser = argparse.ArgumentParser(description="Demo Russian Dactyl Recognition...")
parser.add_argument("-p", "--config", required=True, type=str, help="Path to config")
parser.add_argument("--mp", required=False, action="store_true", help="Enable multiprocessing")
parser.add_argument("-v", "--verbose", required=False, action="store_true", help="Enable logging")
parser.add_argument("-l", "--length", required=False, type=int, default=4, help="Deque length for predictions")
known_args, _ = parser.parse_known_args(params)
return known_args
if __name__ == "__main__":
args = parse_arguments()
conf = OmegaConf.load(args.config)
runner = Runner(conf.model_path, conf, args.mp, args.verbose, args.length)
runner.run()