forked from dmj111/trueskill
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrueskill.py
406 lines (327 loc) · 12.8 KB
/
trueskill.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
#!/usr/bin/python
# Copyright 2010 Doug Zongker
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Implements the player skill estimation algorithm from Herbrich et al.,
"TrueSkill(TM): A Bayesian Skill Rating System".
"""
from __future__ import print_function
__author__ = "Doug Zongker <[email protected]>"
import sys
if sys.hexversion < 0x02060000:
print("requires Python 2.6 or higher")
sys.exit(1)
from math import sqrt
from normal import pdf, cdf, invcdf
# from scipy.stats.distributions import norm as scipy_norm
# norm = scipy_norm()
# pdf = norm.pdf
# cdf = norm.cdf
# invcdf = norm.ppf
# Update rules for approximate marginals for the win and draw cases,
# respectively.
def Vwin(t, e):
return pdf(t-e) / cdf(t-e)
def Wwin(t, e):
return Vwin(t, e) * (Vwin(t, e) + t - e)
def Vdraw(t, e):
return (pdf(-e-t) - pdf(e-t)) / (cdf(e-t) - cdf(-e-t))
def Wdraw(t, e):
return Vdraw(t, e) ** 2 + ((e-t) * pdf(e-t) + (e+t) * pdf(e+t)) / (cdf(e-t) - cdf(-e-t))
class Gaussian(object):
"""
Object representing a gaussian distribution. Create as:
Gaussian(mu=..., sigma=...)
or
Gaussian(pi=..., tau=...)
or
Gaussian() # gives 0 mean, infinite sigma
"""
def __init__(self, mu=None, sigma=None, pi=None, tau=None):
if pi is not None:
self.pi = pi
self.tau = tau
elif mu is not None:
self.pi = sigma ** -2
self.tau = self.pi * mu
else:
self.pi = 0
self.tau = 0
def __repr__(self):
return "N(pi={0.pi},tau={0.tau})".format(self)
def __str__(self):
if self.pi == 0.0:
return "N(mu=0,sigma=inf)"
else:
sigma = sqrt(1/self.pi)
mu = self.tau / self.pi
return "N(mu={0:.3f},sigma={1:.3f})".format(mu, sigma)
def MuSigma(self):
""" Return the value of this object as a (mu, sigma) tuple. """
if self.pi == 0.0:
return 0, float("inf")
else:
return self.tau / self.pi, sqrt(1/self.pi)
def __mul__(self, other):
return Gaussian(pi=self.pi+other.pi, tau=self.tau+other.tau)
def __div__(self, other):
return Gaussian(pi=self.pi-other.pi, tau=self.tau-other.tau)
class Variable(object):
""" A variable node in the factor graph. """
def __init__(self):
self.value = Gaussian()
self.factors = {}
def AttachFactor(self, factor):
self.factors[factor] = Gaussian()
def UpdateMessage(self, factor, message):
old_message = self.factors[factor]
self.value = self.value / old_message * message
self.factors[factor] = message
def UpdateValue(self, factor, value):
old_message = self.factors[factor]
self.factors[factor] = value * old_message / self.value
self.value = value
def GetMessage(self, factor):
return self.factors[factor]
class Factor(object):
""" Base class for a factor node in the factor graph. """
def __init__(self, variables):
self.variables = variables
for v in variables:
v.AttachFactor(self)
# The following Factor classes implement the five update equations
# from Table 1 of the Herbrich et al. paper.
class PriorFactor(Factor):
""" Connects to a single variable, pushing a fixed (Gaussian) value
to that variable. """
def __init__(self, variable, param):
super(PriorFactor, self).__init__([variable])
self.param = param
def Start(self):
self.variables[0].UpdateValue(self, self.param)
class LikelihoodFactor(Factor):
""" Connects two variables, the value of one being the mean of the
message sent to the other. """
def __init__(self, mean_variable, value_variable, variance):
super(LikelihoodFactor, self).__init__([mean_variable, value_variable])
self.mean = mean_variable
self.value = value_variable
self.variance = variance
def UpdateValue(self):
""" Update the value after a change in the mean (going "down" in
the TrueSkill factor graph. """
y = self.mean.value
fy = self.mean.GetMessage(self)
a = 1.0 / (1.0 + self.variance * (y.pi - fy.pi))
self.value.UpdateMessage(self, Gaussian(pi=a*(y.pi - fy.pi),
tau=a*(y.tau - fy.tau)))
def UpdateMean(self):
""" Update the mean after a change in the value (going "up" in
the TrueSkill factor graph. """
# Note this is the same as UpdateValue, with self.mean and
# self.value interchanged.
x = self.value.value
fx = self.value.GetMessage(self)
a = 1.0 / (1.0 + self.variance * (x.pi - fx.pi))
self.mean.UpdateMessage(self, Gaussian(pi=a*(x.pi - fx.pi),
tau=a*(x.tau - fx.tau)))
class SumFactor(Factor):
""" A factor that connects a sum variable with 1 or more terms,
which are summed after being multiplied by fixed (real)
coefficients. """
def __init__(self, sum_variable, terms_variables, coeffs):
assert len(terms_variables) == len(coeffs)
self.sum = sum_variable
self.terms = terms_variables
self.coeffs = coeffs
super(SumFactor, self).__init__([sum_variable] + terms_variables)
def _InternalUpdate(self, var, y, fy, a):
new_pi = 1.0 / (sum(a[j]**2 / (y[j].pi - fy[j].pi) for j in range(len(a))))
new_tau = new_pi * sum(a[j] *
(y[j].tau - fy[j].tau) / (y[j].pi - fy[j].pi)
for j in range(len(a)))
var.UpdateMessage(self, Gaussian(pi=new_pi, tau=new_tau))
def UpdateSum(self):
""" Update the sum value ("down" in the factor graph). """
y = [t.value for t in self.terms]
fy = [t.GetMessage(self) for t in self.terms]
a = self.coeffs
self._InternalUpdate(self.sum, y, fy, a)
def UpdateTerm(self, index):
""" Update one of the term values ("up" in the factor graph). """
# Swap the coefficients around to make the term we want to update
# be the 'sum' of the other terms and the factor's sum, eg.,
# change:
#
# x = y_1 + y_2 + y_3
#
# to
#
# y_2 = x - y_1 - y_3
#
# then use the same update equation as for UpdateSum.
b = self.coeffs
a = [-b[i] / b[index] for i in range(len(b)) if i != index]
a.insert(index, 1.0 / b[index])
v = self.terms[:]
v[index] = self.sum
y = [i.value for i in v]
fy = [i.GetMessage(self) for i in v]
self._InternalUpdate(self.terms[index], y, fy, a)
class TruncateFactor(Factor):
""" A factor for (approximately) truncating the team difference
distribution based on a win or a draw (the choice of which is
determined by the functions you pass as V and W). """
def __init__(self, variable, V, W, epsilon):
super(TruncateFactor, self).__init__([variable])
self.var = variable
self.V = V
self.W = W
self.epsilon = epsilon
def Update(self):
x = self.var.value
fx = self.var.GetMessage(self)
c = x.pi - fx.pi
d = x.tau - fx.tau
sqrt_c = sqrt(c)
args = (d / sqrt_c, self.epsilon * sqrt_c)
V = self.V(*args)
W = self.W(*args)
new_val = Gaussian(pi=c / (1.0 - W), tau=(d + sqrt_c * V) / (1.0 - W))
self.var.UpdateValue(self, new_val)
def DrawProbability(epsilon, beta, total_players=2):
""" Compute the draw probability given the draw margin (epsilon). """
return 2 * cdf(epsilon / (sqrt(total_players) * beta)) - 1
def DrawMargin(p, beta, total_players=2):
""" Compute the draw margin (epsilon) given the draw probability. """
return invcdf((p+1.0)/2) * sqrt(total_players) * beta
INITIAL_MU = 25.0
INITIAL_SIGMA = INITIAL_MU / 3.0
def SetParameters(beta=None, epsilon=None, draw_probability=None,
gamma=None):
"""
Sets three global parameters used in the TrueSkill algorithm.
beta is a measure of how random the game is. You can think of it as
the difference in skill (mean) needed for the better player to have
an ~80% chance of winning. A high value means the game is more
random (I need to be *much* better than you to consistently overcome
the randomness of the game and beat you 80% of the time); a low
value is less random (a slight edge in skill is enough to win
consistently). The default value of beta is half of INITIAL_SIGMA
(the value suggested by the Herbrich et al. paper).
epsilon is a measure of how common draws are. Instead of specifying
epsilon directly you can pass draw_probability instead (a number
from 0 to 1, saying what fraction of games end in draws), and
epsilon will be determined from that. The default epsilon
corresponds to a draw probability of 0.1 (10%). (You should pass a
value for either epsilon or draw_probability, not both.)
gamma is a small amount by which a player's uncertainty (sigma) is
increased prior to the start of each game. This allows us to
account for skills that vary over time; the effect of old games
on the estimate will slowly disappear unless reinforced by evidence
from new games.
"""
global BETA, EPSILON, GAMMA
if beta is None:
BETA = INITIAL_SIGMA / 2.0
else:
BETA = beta
if epsilon is None:
if draw_probability is None:
draw_probability = 0.10
EPSILON = DrawMargin(draw_probability, BETA)
else:
EPSILON = epsilon
print("EPSILON %f" % EPSILON)
if gamma is None:
GAMMA = INITIAL_SIGMA / 100.0
else:
GAMMA = gamma
SetParameters()
def AdjustPlayers(players):
"""
Adjust the skills of a list of players.
'players' is a list of player objects, for all the players who
participated in a single game. A 'player object' is any object with
a "skill" attribute (a (mu, sigma) tuple) and a "rank" attribute.
Lower ranks are better; the lowest rank is the overall winner of the
game. Equal ranks mean that the two players drew.
This function updates all the "skill" attributes of the player
objects to reflect the outcome of the game. The input list is not
altered.
"""
players = players[:]
# Sort players by rank, the factor graph will connect adjacent team
# performance variables.
players.sort(key=lambda p: p.rank)
# Create all the variable nodes in the graph. "Teams" are each a
# single player; there's a one-to-one correspondence between players
# and teams. (It would be straightforward to make multiplayer
# teams, but it's not needed for my current purposes.)
ss = [Variable() for p in players]
ps = [Variable() for p in players]
ts = [Variable() for p in players]
ds = [Variable() for p in players[:-1]]
# Create each layer of factor nodes. At the top we have priors
# initialized to the player's current skill estimate.
skill = [PriorFactor(s, Gaussian(mu=pl.skill[0],
sigma=pl.skill[1] + GAMMA))
for (s, pl) in zip(ss, players)]
skill_to_perf = [LikelihoodFactor(s, p, BETA**2)
for (s, p) in zip(ss, ps)]
perf_to_team = [SumFactor(t, [p], [1])
for (p, t) in zip(ps, ts)]
team_diff = [SumFactor(d, [t1, t2], [+1, -1])
for (d, t1, t2) in zip(ds, ts[:-1], ts[1:])]
# At the bottom we connect adjacent teams with a 'win' or 'draw'
# factor, as determined by the rank values.
trunc = [TruncateFactor(d,
Vdraw if pl1.rank == pl2.rank else Vwin,
Wdraw if pl1.rank == pl2.rank else Wwin,
EPSILON)
for (d, pl1, pl2) in zip(ds, players[:-1], players[1:])]
# Start evaluating the graph by pushing messages 'down' from the
# priors.
for f in skill:
f.Start()
for f in skill_to_perf:
f.UpdateValue()
for f in perf_to_team:
f.UpdateSum()
# Because the truncation factors are approximate, we iterate,
# adjusting the team performance (t) and team difference (d)
# variables until they converge. In practice this seems to happen
# very quickly, so I just do a fixed number of iterations.
#
# This order of evaluation is given by the numbered arrows in Figure
# 1 of the Herbrich paper.
for i in range(5):
for f in team_diff:
f.UpdateSum() # arrows (1) and (4)
for f in trunc:
f.Update() # arrows (2) and (5)
for f in team_diff:
f.UpdateTerm(0) # arrows (3) and (6)
f.UpdateTerm(1)
# Now we push messages back up the graph, from the teams back to the
# player skills.
for f in perf_to_team:
f.UpdateTerm(0)
for f in skill_to_perf:
f.UpdateMean()
# Finally, the players' new skills are the new values of the s
# variables.
for s, pl in zip(ss, players):
pl.skill = s.value.MuSigma()
__all__ = ["AdjustPlayers", "SetParameters", "INITIAL_MU", "INITIAL_SIGMA"]