-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMultiLevel.py
108 lines (99 loc) · 3.67 KB
/
MultiLevel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
#####################################################
## Created on Nov 28, 2015 by Ailing Zhang ##
#####################################################
import numpy as np
from BirthDeath import BirthDeath
from GaussSeidel import GaussSeidel
from numpy import linalg
from GraphConnectedComponents import GraphPartitionByConnectedComponent
from Graph_MCL import GraphPartitionByMCL
import math
import pdb
import time
import sys
# MultiLevel function is used to compute steady-state solution using MultiLevel
# algorithm. @grid is used to control the number of states to combine in the basic
# strategy. @strategy = 1 is the basic strategy. @strategy = 3 is the MCL strategy.
# @strategy = 2 was an idea that use connected components to cluster graph nodes.
# But finally we found that there is no steady-state for those particular process.
# So this part has been deleted.
def MultiLevel(P, grid = 4, strategy = 1):
start = time.time()
n = P.shape[0];
count = 0;
if n <= 2 * grid:
return GaussSeidel(np.transpose(P), n, 1e-7, True)
else:
p_tilde, subcount = GaussSeidel(np.transpose(P), n, 20, False)
count += subcount
if strategy == 1:
cluster = Partition(P, grid)
# elif strategy == 2:
# cluster = GraphPartitionByConnectedComponent(P)
elif strategy == 3:
cluster = GraphPartitionByMCL(np.transpose(P))
else:
print "Invalid strategy!"
strategy = 1
P_next, p_tilde_next = Coarse(P, p_tilde, cluster);
#It's possible that after the aggregation, the coarsed process doesn't have
# steady-state. In this case, we need to perform GaussSeidel to return the
# right answer.
for i in range(P_next.shape[0]):
if P_next[i][i] == 0:
return GaussSeidel(np.transpose(P), n, 1e-7, True)
p_bar_next, subcount = MultiLevel(P_next, grid, strategy)
p_star_next = np.divide(p_bar_next, p_tilde_next)
p_star = I(p_star_next, n, cluster)
p_bar = C(p_tilde, p_star)
return (p_bar / np.sum(p_bar), count+subcount)
def Partition(P, grid):
n = P.shape[0];
originalset = range(n)
cluster = [originalset[i:i+grid] for i in range(0, (n / grid - 1) * grid,grid)]
cluster.append(range((n/grid-1)*grid, n))#[[0,1],[2,3],[4,5]]
return cluster
#equation 12
def Coarse(P, p_tilde, cluster):
n = len(cluster)
P_next = np.zeros((n,n))
p_tilde_next = np.zeros((n,1))
for i in range(n):
for j in cluster[i]:
p_tilde_next[i] += p_tilde[j]
for i in range(n):
for j in range(n):
sum = 0
for k in cluster[i]:
sum_i = 0
for l in cluster[j]:
sum_i += P[l][k]
sum += sum_i * p_tilde[k]
P_next[j][i] = sum / p_tilde_next[i]
print "P_next length:", len(P_next), "p_tilde_next length:", len(p_tilde_next)
return (P_next, p_tilde_next)
def I(p_star_next, n, cluster):
p_star = np.zeros((n,1))
for i in range(len(cluster)):
for j in cluster[i]:
p_star[j] = p_star_next[i]
return p_star
def C(p_tilde, p_star):
p_bar = np.multiply(p_tilde, p_star)
return p_bar
if __name__ == "__main__":
# n = 100
start = time.time()
n = int(sys.argv[1])
birth = 1
death = 2
grid = 4
Q = BirthDeath(n, birth, death) #generate transition matrix
P = np.transpose(Q)
level = int(math.log(n, grid))
iterations = 0;
pi, iterations = MultiLevel(P, grid, 3)
end = time.time()
print "Number of Iterations: ", iterations
print "Number of States: ", n
print "Time Elapsed: ", end-start, " seconds"