-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprogram.html
397 lines (396 loc) · 7.1 KB
/
program.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
---
title: Program
layout: default
---
<h2>Program for AISTATS 2001</h2>
<br>
<p>
<li><h3><u> Thursday January 4: tutorials</u>
</h3>
<p>
10.00 -- 12.00
<br>
David Edwards (Novo Pharmaceutical Company)
<br>
"Graphical models for mixed data : an introduction to the theory and
practice"
<br>
<p>
2.00 -- 4.00
<br>
Yoav Freund (AT&T Research)
<br>
"Predicting More -- Assuming Less, new methodologies in statistical
inference"
<br>
<p>
Coffee Break
<br>
<p>
4.30 -- 6.30
<br>
David MacKay (University of Cambridge)
<br>
"Error correcting codes and belief propagation"
<br>
<p>
<p>
<li><h3><u> Friday January 5 </u>
</h3>
<p>
7.30 -- 8.45 Breakfast
<br>
<p>
8.45 -- 9.00 Opening
<br>
<p>
Morning 1: Clustering
<br>
<p>
9.00 -- 9.30
<br>
The Learning Curve Method Applied to Clustering
<br>
Chris Meek, Bo Thiesson, David Heckerman
<br>
<p>
9.30 -- 10.00
<br>
Bootstrapping Self-Organizing Maps to Assess the Statistical
Significance of Local Proximity
<br>
Eric de Bodt, Marie Cottrell
<br>
<p>
10.00 -- 10.30
<br>
A Random Walks View of Spectral Segmentation
<br>
Marina Meila, Jianbo Shi
<br>
<p>
Coffee break
<br>
<p>
Morning 2: Speech/language
<br>
<p>
11.00 -- 11.30
<br>
Distributional Similarity, Frequency, and the Skew Divergence
<br>
Lillian Lee
<br>
<p>
11.30 -- 12.00
<br>
Handling Missing and Unreliable Information in Speech Recognition
<br>
Phil Green, Martin Cooke, Jon Barker, Ljubomir Josifovski
<br>
<p>
12.00 -- 2.00 Conference lunch
<br>
<p>
<p>
Afternoon: Graphical Model search
<br>
<p>
2.00 -- 2.30
<br>
Finding an optimal chain is harder than finding an optimal tree
<br>
Chris Meek
<br>
<p>
2.30 -- 3.00
<br>
An Anytime Algorithm for Causal Inference
<br>
Peter Spirtes
<br>
<p>
3.00 -- 3.30
<br>
A Simulation Study of Three Related Causal Data Mining Algorithms
<br>
Subramani Mani, Gregory Cooper
<br>
<p>
Coffee break
<br>
<p>
4.00 -- 5.00 Poster preview
<br>
<p>
Dinner (not provided)
<br>
<p>
7.30 -- 10.00 Poster session 1
<br>
<p>
<p>
<li><h3> <u> Saturday January 6 </u>
</h3>
<p>
7.30 -- 9.00 Breakfast
<br>
<p>
Morning 1: Boosting
<br>
<p>
9.00 -- 9.30
<br>
Boosting for Regression and Classification: Some Views from Analogy
<br>
Wenxin Jiang
<br>
<p>
9.30 -- 10.00
<br>
Online Bagging and Boosting
<br>
Nikunj Oza, Stuart Russell
<br>
<p>
Coffee break
<br>
<p>
Morning 2: Kernel methods
<br>
<p>
10.30 -- 11.00
<br>
An improved training algorithm for kernel Fisher discriminants
<br>
Sebastian Mika, Alexander Smola, Bernhard Schoelkopf
<br>
<p>
11.00 -- 11.30
<br>
A Kernel Approach for Vector Quantization with Guaranteed Distortion
Bounds
<br>
Michael Tipping, Bernhard Schoelkopf
<br>
<p>
11.30 -- 12.30 Poster preview
<br>
<p>
Lunch (not provided)
<br>
<p>
5.00 -- 7.30 Poster session 2
<br>
<p>
7.30 -- 10.00 Conference banquet
<br>
<p>
<p>
<li><h3> <u> Sunday, January 7 </u>
</h3>
<p>
7.30 -- 9.00 Breakfast
<br>
<p>
Morning 1: Dynamic Bayesian networks
<br>
<p>
9.00 -- 9.30
<br>
Products of Hidden Markov Models
<br>
Andrew Brown, Geoffrey Hinton
<br>
<p>
9.30 -- 10.00
<br>
Solving Hidden-Mode Markov Decision Problems
<br>
Samuel Choi, Nevin Zhang, Dit-Yan Yeung
<br>
<p>
10.00 -- 10.30
<br>
Can the Computer Learn to Play Music Expressively?
<br>
Christopher Raphael
<br>
<p>
Coffee break
<br>
<p>
Morning 2: Multiple Models
<br>
<p>
11.00 -- 11.30
<br>
Hyperparameters for Soft Bayesian Model Selection
<br>
Adrian Corduneanu, Christopher Bishop
<br>
<p>
11.30 -- 12.00
<br>
Managing Multiple Models
<br>
Hugh Chipman, Edward George, Robert McCulloch
<br>
<p>
12.00 -- 12.15 Closing
<br>
<p>
<hr>
<p>
<h3><u>Papers in poster session 1 (Friday January 5) </u></h3>
<p>
Image Decomposition and Tracking using Dynamic Positional Trees
<br>
Amos Storkey, Christopher Williams
<br>
<p>
Profile Likelihood in Directed Graphical Models from BUGS Output
<br>
Malene Hojbjerre
<br>
<p>
Stochastic System Monitoring and Control
<br>
Gregory Provan
<br>
<p>
Comparing Prequential Model Selection Criteria in Supervised Learning of
Mixture Models
<br>
Petri Myllymaki, Petri Kontkanen, Henry Tirri
<br>
<p>
Variational Learning for Multi-Layer Networks of Linear Threshold Units
<br>
Neil Lawrence
<br>
<p>
Models for Conditional Probability Tables in Educational Assessment
<br>
Russell Almond, DiBello Lou, Frank Jenkins, Robert Mislevy, Deniz Senturk,
<br>
Linda Steinberg, Duanli Yan
<br>
<p>
Discriminant Analysis on Dissimilarity Data : a New Fast Gaussian like
Algorithm
<br>
Guerin-Dugue Anne, Celeux Gilles
<br>
<p>
Bayesian Support Vector Regression
<br>
Martin Law, James Kwok
<br>
<p>
Message Length as an Effective Ockham's Razor in Decision Tree Induction
<br>
Scott Needham, David Dowe
<br>
<p>
Dual perturb and combine algorithm
<br>
Pierre Geurts
<br>
<p>
Bagging and the Bayesian Bootstrap
<br>
Merlise Clyde, Herbert Lee
<br>
<p>
On the correspondence between partially-observable Markov decision processes
and Bayes-adaptive Markov decision processes
<br>
Michael Duff
<br>
<p>
Learning mixtures of smooth nonuniform deformation fields for probabilistic
image matching
<br>
Nebojsa Jojic, Brendan Frey, Patrice Simard, David Heckerman
<br>
<p>
Clustering in high dimensions: modular mixture models
<br>
Hagai Attias
<br>
<p>
<hr>
<p>
<h3><u>Papers in poster session 2 (Saturday January 6)</u></h3>
<p>
Learning in Bayesian networks with mixed variables
<br>
Susanne Bottcher
<br>
<p>
Instrumental Variable Estimation of Causal Influence without Linearity
<br>
Richard Scheines, Greg Cooper
<br>
<p>
On Parameter Priors for Discrete DAG Models
<br>
Dan Geiger, Dmitry Rusakov
<br>
<p>
The Efficient Propagation of Arbitrary Subsets of Beliefs in Discrete-Valued
Bayesian Networks
<br>
Duncan Smith
<br>
<p>
Another look at sensitivity of Bayesian networks to imprecise probabilities
<br>
Oscar Kipersztok, Hai-Qin Wang
<br>
<p>
Some variations on variation independence.
<br>
Philip Dawid
<br>
<p>
On searching for optimal classifiers among Bayesian networks
<br>
Robert Cowell
<br>
<p>
Geographical clustering of cancer incidence by means of Bayesian networks
and conditional Gaussian networks
<br>
J. M. Pena, I. Izarzugaza, J. A. Lozano, E. Aldasoro and P. Larranaga
<br>
<p>
Statistical Aspects of Stochastic Logic Programs
<br>
James Cussens
<br>
<p>
Temporal Matching under Uncertainty
<br>
Ahmed Tawfik, Greg Scott
<br>
<p>
Using Unsupervised Learning to Guide Resampling in Imbalanced Data Sets
<br>
Adam Nickerson, Nathalie Japkowicz, Evangelos Milios
<br>
<p>
Information-Theoretic Advisors in Invisible Chess
<br>
Ariel Bud, Ingrid Zukerman, David Albrecht, Ann Nicholson
<br>
<p>
A Non-Parametric EM-Style Algorithm for Filling-In Missing Values
<br>
Rich Caruana
<br>
<p>
Predicting with Variables Constructed from Univariate Temporal Sequences
<br>
Mehmet Kayaalp, Greg Cooper, Gilles Clermont