forked from microbiome/tutorials
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCoremicrobiotaAmplicon.Rmd
executable file
·291 lines (213 loc) · 8.4 KB
/
CoremicrobiotaAmplicon.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
---
title: "Core microbiome analysis for Amplicon data"
author: "Leo Lahti, Sudarshan Shetty et al. "
bibliography:
- bibliography.bib
output:
BiocStyle::html_document:
number_sections: no
toc: yes
toc_depth: 4
toc_float: true
self_contained: true
thumbnails: true
lightbox: true
gallery: true
use_bookdown: false
highlight: haddock
---
<!--
%\VignetteEngine{knitr::rmarkdown}
%\VignetteIndexEntry{microbiome tutorial - core}
%\usepackage[utf8]{inputenc}
%\VignetteEncoding{UTF-8}
-->
## Make phyloseq object
This tutorial is useful for analysis of output files from [(Mothur)](https://www.mothur.org/), [(QIIME or QIIME2)](https://qiime2.org/) or any tool that gives a biom file as output. There is also a simple way to read comma seperated (*.csv) files.
Simple comma seperated files:
```{r, read-simple-csv-otu-tables, warning=FALSE, message=FALSE, eval=FALSE}
library(microbiome)
otu.file <-
system.file("extdata/qiita1629_otu_table.csv",
package='microbiome')
tax.file <- system.file("extdata/qiita1629_taxonomy_table.csv",
package='microbiome')
meta.file <- system.file("extdata/qiita1629_mapping_subset.csv",
package='microbiome')
pseq.csv <- read_phyloseq(
otu.file=otu.file,
taxonomy.file=tax.file,
metadata.file=meta.file, type = "simple")
```
Biom file:
```{r, read-otu-biom, eval=FALSE}
# Read the biom file
biom.file <-
system.file("extdata/qiita1629.biom",
package = "microbiome")
# Read the mapping/metadata file
meta.file <-
system.file("extdata/qiita1629_mapping.csv",
package = "microbiome")
# Make phyloseq object
pseq.biom <- read_phyloseq(otu.file = biom.file,
metadata.file = meta.file,
taxonomy.file = NULL, type = "biom")
```
Mothur shared OTUs and Consensus Taxonomy:
```{r, read-otu-mothur, eval=FALSE}
otu.file <- system.file(
"extdata/Baxter_FITs_Microbiome_2016_fit.final.tx.1.subsample.shared",
package='microbiome')
tax.file <- system.file(
"extdata/Baxter_FITs_Microbiome_2016_fit.final.tx.1.cons.taxonomy",
package='microbiome')
meta.file <- system.file(
"extdata/Baxter_FITs_Microbiome_2016_mapping.csv",
package='microbiome')
pseq.mothur <- read_phyloseq(otu.file=otu.file,
taxonomy.file =tax.file,
metadata.file=meta.file, type = "mothur")
print(pseq.mothur)
```
Now, we proceed to core microbiota analysis.
## Core microbiota analysis
Here the data from [Caporaso, J. Gregory, et al. "Moving pictures of the human microbiome." Genome biology 12.5 (2011): R50.](https://genomebiology.biomedcentral.com/articles/10.1186/gb-2011-12-5-r50?report=reader) will be used which is stored as example in [jeevanuDB](https://github.com/microsud/jeevanuDB)
```{r, core-microbiota-amplicon-data, eval=TRUE}
# install
# install.packages("devtools")
# devtools::install_github("microsud/jeevanuDB")
# check the data
library(jeevanuDB)
ps <- moving_pictures
table(meta(ps)$sample_type, meta(ps)$host_subject_id)
# Filter the data to include only gut samples from M3 subject
ps.m3 <- subset_samples(ps, sample_type == "stool" & host_subject_id == "M3")
print(ps.m3)
# keep only taxa with positive sums
ps.m3 <- prune_taxa(taxa_sums(ps.m3) > 0, ps.m3)
print(ps.m3)
# Calculate compositional version of the data
# (relative abundances)
ps.m3.rel <- microbiome::transform(ps.m3, "compositional")
```
Output of deblur/dada2 will most likely have seqs as rownames instead of OTU ids or taxa names
```{r}
taxa_names(ps.m3.rel)[1:3]
```
We can change it to ASVIDs
```{r}
library(Biostrings)
dna <- Biostrings::DNAStringSet(taxa_names(ps.m3.rel))
names(dna) <- taxa_names(ps.m3.rel)
ps.m3.rel <- merge_phyloseq(ps.m3.rel, dna)
taxa_names(ps.m3.rel) <- paste0("ASV", seq(ntaxa(ps.m3.rel)))
# now check again
taxa_names(ps.m3.rel)[1:3]
```
### Core microbiota analysis
If you only need the names of the core taxa, do as follows. This returns the taxa that exceed the given prevalence and detection thresholds.
```{r core-members, message=FALSE, warning=FALSE, eval = FALSE}
core.taxa.standard <- core_members(ps.m3.rel, detection = 0.0001, prevalence = 50/100)
core.taxa.standard
```
A full phyloseq object of the core microbiota is obtained as follows:
```{r core-data, message=FALSE, warning=FALSE, eval=TRUE}
pseq.core <- core(ps.m3.rel, detection = 0.0001, prevalence = .5)
```
Retrieving the associated taxa names from the phyloseq object:
```{r core-taxa, message=FALSE, warning=FALSE, eval=TRUE}
core.taxa <- taxa(pseq.core)
class(core.taxa)
# get the taxonomy data
tax.mat <- tax_table(pseq.core)
tax.df <- as.data.frame(tax.mat)
# add the OTus to last column
tax.df$OTU <- rownames(tax.df)
# select taxonomy of only
# those OTUs that are core memebers based on the thresholds that were used.
core.taxa.class <- dplyr::filter(tax.df, rownames(tax.df) %in% core.taxa)
knitr::kable(head(core.taxa.class))
```
## Core visualization
### Core line plots
Determine core microbiota across various abundance/prevalence
thresholds with the blanket analysis [(Salonen et al. CMI, 2012)](http://onlinelibrary.wiley.com/doi/10.1111/j.1469-0691.2012.03855.x/abstract) based on various signal and prevalences.
```{r core2, warning=FALSE, eval=TRUE}
# With compositional (relative) abundances
det <- c(0, 0.1, 0.5, 2, 5, 20)/100
prevalences <- seq(.05, 1, .05)
plot_core(ps.m3.rel, prevalences = prevalences,
detections = det, plot.type = "lineplot") +
xlab("Relative Abundance (%)") +
theme_bw()
```
### Core heatmaps
This visualization method has been used for instance in [Intestinal microbiome landscaping: Insight in community assemblage and implications for microbial modulation strategies](https://academic.oup.com/femsre/article/doi/10.1093/femsre/fuw045/2979411/Intestinal-microbiome-landscaping-insight-in#58802539). Shetty et al. _FEMS Microbiology Reviews_ fuw045, 2017.
Note that you can order the taxa on the heatmap with the order.taxa argument.
```{r core-example3, warning=FALSE, eval=TRUE}
# Core with compositionals:
prevalences <- seq(.05, 1, .05)
detections <- 10^seq(log10(1e-4), log10(.2), length = 10)
# Also define gray color palette
gray <- gray(seq(0,1,length=5))
p1 <- plot_core(ps.m3.rel,
plot.type = "heatmap",
colours = gray,
prevalences = prevalences,
detections = detections, min.prevalence = .5) +
xlab("Detection Threshold (Relative Abundance (%))")
p1 <- p1 + theme_bw() + ylab("ASVs")
p1
```
Using viridis color palette
```{r core-example3_plot, warning=FALSE, eval=TRUE}
library(viridis)
print(p1 + scale_fill_viridis())
```
As it can be seen, we see only OTu IDs and this may not be useful to interpret the data. We need to repreoccess this figure to include taxonomic information. We can do this as follows:
```{r,core-example4, warning=FALSE, eval=TRUE}
library(RColorBrewer)
library(knitr)
# get the data used for plotting
df <- p1$data
# get the list of OTUs
list <- df$Taxa
# check the OTU ids
# print(list)
# get the taxonomy data
tax <- as.data.frame(tax_table(ps.m3.rel))
# add the ASVs to last column
tax$ASV <- rownames(tax)
# select taxonomy of only
# those OTUs that are used in the plot
tax2 <- dplyr::filter(tax, rownames(tax) %in% list)
# head(tax2)
# We will merege all the column into one except the Doamin as all is bacteria in this case
tax.unit <- tidyr::unite(tax2, Taxa_level,c("Domain", "Phylum", "Class", "Order", "Family", "Genus", "Species", "ASV"), sep = "_;", remove = TRUE)
tax.unit$Taxa_level <- gsub(pattern="[a-z]__",replacement="", tax.unit$Taxa_level)
# add this new information into the plot data df
df$Taxa <- tax.unit$Taxa_level
# you can see now we have the taxonomic information
knitr::kable(head(df))
# replace the data in the plot object
p1$data <- df
plot(p1 + theme(axis.text.y = element_text(face="italic")))
```
## Genus level
```{r}
ps.m3.rel.gen <- aggregate_taxa(ps.m3.rel, "Genus")
```
```{r fig.width=8, warning=FALSE, eval=TRUE}
library(RColorBrewer)
prevalences <- seq(.05, 1, .05)
detections <- 10^seq(log10(1e-4), log10(.2), length = 10)
p1 <- plot_core(ps.m3.rel.gen,
plot.type = "heatmap",
colours = rev(brewer.pal(5, "RdBu")),
prevalences = prevalences,
detections = detections, min.prevalence = .5) +
xlab("Detection Threshold (Relative Abundance (%))")
p1 <- p1 + theme_bw() + ylab("ASVs")
p1
```