-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathdualAveraging.m
114 lines (93 loc) · 3.61 KB
/
dualAveraging.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
function [theta, epsilonbar, epsilon_seq, epsilonbar_seq] = dualAveraging(f, theta0, delta, n_warmup, n_updates)
% function [theta, epsilonbar, epsilon_seq, epsilonbar_seq] = dualAveraging(f, n_warmup, theta0, delta, n_updates)
%
% Adjusts the step-size of NUTS by the dual-averaging (stochastic
% optimization) algorithm of Hoffman and Gelman (2014).
%
% Args:
% f - function handle: returns the log probability of the target and
% its gradient.
% theta0 - column vector: the initial state of the chain
% delta - double in the range [0, 1]: the target "acceptance rate" of NUTS.
% n_warmup - int: the number of NUTS iterations for the dual-averaging
% algorithm.
% n_updates - int: the number of updates to be printed till the completion
% of the step-size adjustment.
%
% Returns:
% theta - last state of the chain after the step-size adjustment, which
% can be used as the initial state for the sampling stage (no need for
% additional 'burn-in' samples
% epsilonbar - step-size corresponding to the target "acceptance rate".
% epsilon_seq, epsilonbar_seq - column vectors: the whole history of the
% attempted and averaged step-size. It can be used to diagnose the
% convergence of the dual-averaging algorithm.
% Default argment values.
if nargin < 3
delta = 0.8;
end
if nargin < 4
n_warmup = 500;
end
if nargin < 5
n_updates = 5;
end
% Calculate the number of iterations per update.
n_itr_per_update = floor(n_warmup / n_updates);
[logp, grad] = f(theta0);
% Parameters for NUTS
max_tree_depth = 12;
% Choose a reasonable first epsilon by a simple heuristic.
[epsilon, nfevals_total] = find_reasonable_epsilon(theta0, grad, logp, f);
% Parameters for the dual averaging algorithm.
gamma = .05;
t0 = 10;
kappa = 0.75;
mu = log(10 * epsilon);
% Initialize dual averaging algorithm.
epsilonbar = 1;
epsilon_seq = zeros(n_warmup, 1);
epsilonbar_seq = zeros(n_warmup, 1);
epsilon_seq(1) = epsilon;
Hbar = 0;
theta = theta0;
for i = 1:n_warmup
[theta, ave_alpha, nfevals, logp, grad] = NUTS(f, epsilon, theta, logp, grad, max_tree_depth);
nfevals_total = nfevals_total + nfevals;
eta = 1 / (i + t0);
Hbar = (1 - eta) * Hbar + eta * (delta - ave_alpha);
epsilon = exp(mu - sqrt(i) / gamma * Hbar);
epsilon_seq(i) = epsilon;
eta = i^-kappa;
epsilonbar = exp((1 - eta) * log(epsilonbar) + eta * log(epsilon));
epsilonbar_seq(i) = epsilonbar;
% Update on the progress of simulation.
if mod(i, n_itr_per_update) == 0
disp(['The ', num2str(i), ' iterations are complete.'])
end
end
fprintf('Each iteration of NUTS required %.1f gradient evaluations during the step-size adjustment.\n', ...
nfevals_total / (n_warmup + 1));
end
function [epsilon, nfevals] = find_reasonable_epsilon(theta0, grad0, logp0, f)
epsilon = 1;
r0 = randn(length(theta0), 1);
% Figure out what direction we should be moving epsilon.
[~, rprime, ~, logpprime] = leapfrog(theta0, r0, grad0, epsilon, f);
nfevals = 1;
acceptprob = exp(logpprime - logp0 - 0.5 * (rprime' * rprime - r0' * r0));
a = 2 * (acceptprob > 0.5) - 1;
% Keep moving epsilon in that direction until acceptprob crosses 0.5.
while (acceptprob^a > 2^(-a))
epsilon = epsilon * 2^a;
[~, rprime, ~, logpprime] = leapfrog(theta0, r0, grad0, epsilon, f);
nfevals = nfevals + 1;
acceptprob = exp(logpprime - logp0 - 0.5 * (rprime' * rprime - r0' * r0));
end
end
function [thetaprime, rprime, gradprime, logpprime] = leapfrog(theta, r, grad, epsilon, f)
rprime = r + 0.5 * epsilon * grad;
thetaprime = theta + epsilon * rprime;
[logpprime, gradprime] = f(thetaprime);
rprime = rprime + 0.5 * epsilon * gradprime;
end