-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathMenWomenUnemployment.twb
666 lines (665 loc) · 41.2 KB
/
MenWomenUnemployment.twb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
<?xml version='1.0' encoding='utf-8' ?>
<!-- build 10300.17.0728.2252 -->
<workbook original-version='10.3' source-build='10.3.2 (10300.17.0728.2252)' source-platform='win' version='10.3' xmlns:user='http://www.tableausoftware.com/xml/user'>
<preferences>
<preference name='ui.encoding.shelf.height' value='24' />
<preference name='ui.shelf.height' value='26' />
</preferences>
<datasources>
<datasource caption='Sheet1 (Long-Term-Unemployment-Statistics)' inline='true' name='federated.0q6joke1k5a74g16f46951fn7fum' version='10.3'>
<connection class='federated'>
<named-connections>
<named-connection caption='Long-Term-Unemployment-Statistics' name='excel-direct.04o08e11ws2x541bc6hf70u7nh8a'>
<connection class='excel-direct' cleaning='no' compat='no' dataRefreshTime='' filename='C:/Users/aakash.chotrani/Downloads/Long-Term-Unemployment-Statistics.xlsx' interpretationMode='0' password='' server='' validate='no' />
</named-connection>
</named-connections>
<relation connection='excel-direct.04o08e11ws2x541bc6hf70u7nh8a' name='Sheet1' table='[Sheet1$]' type='table'>
<columns gridOrigin='A1:D1709:no:A1:D1709:0' header='yes' outcome='6'>
<column datatype='string' name='Age' ordinal='0' />
<column datatype='string' name='Gender' ordinal='1' />
<column datatype='date' name='Period' ordinal='2' />
<column datatype='integer' name='Unemployed' ordinal='3' />
</columns>
</relation>
<refresh increment-key='' incremental-updates='false' />
<metadata-records>
<metadata-record class='column'>
<remote-name>Age</remote-name>
<remote-type>130</remote-type>
<local-name>[Age]</local-name>
<parent-name>[Sheet1]</parent-name>
<remote-alias>Age</remote-alias>
<ordinal>0</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<contains-null>true</contains-null>
<collation flag='1' name='LEN_RUS_S2' />
<attributes>
<attribute datatype='string' name='DebugRemoteType'>"WSTR"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>Gender</remote-name>
<remote-type>130</remote-type>
<local-name>[Gender]</local-name>
<parent-name>[Sheet1]</parent-name>
<remote-alias>Gender</remote-alias>
<ordinal>1</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<contains-null>true</contains-null>
<collation flag='1' name='LEN_RUS_S2' />
<attributes>
<attribute datatype='string' name='DebugRemoteType'>"WSTR"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>Period</remote-name>
<remote-type>7</remote-type>
<local-name>[Period]</local-name>
<parent-name>[Sheet1]</parent-name>
<remote-alias>Period</remote-alias>
<ordinal>2</ordinal>
<local-type>date</local-type>
<aggregation>Year</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='string' name='DebugRemoteType'>"DATE"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>Unemployed</remote-name>
<remote-type>20</remote-type>
<local-name>[Unemployed]</local-name>
<parent-name>[Sheet1]</parent-name>
<remote-alias>Unemployed</remote-alias>
<ordinal>3</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='string' name='DebugRemoteType'>"I8"</attribute>
</attributes>
</metadata-record>
<metadata-record class='capability'>
<remote-name />
<remote-type>0</remote-type>
<parent-name>[Sheet1]</parent-name>
<remote-alias />
<aggregation>Count</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='integer' name='context'>0</attribute>
<attribute datatype='string' name='gridOrigin'>"A1:D1709:no:A1:D1709:0"</attribute>
<attribute datatype='boolean' name='header'>true</attribute>
<attribute datatype='integer' name='outcome'>6</attribute>
</attributes>
</metadata-record>
</metadata-records>
</connection>
<column datatype='string' name='[Age]' role='dimension' type='nominal' />
<column datatype='string' name='[Gender]' role='dimension' type='nominal' />
<column datatype='integer' name='[Number of Records]' role='measure' type='quantitative' user:auto-column='numrec'>
<calculation class='tableau' formula='1' />
</column>
<column-instance column='[Age]' derivation='None' name='[none:Age:nk]' pivot='key' type='nominal' />
<column-instance column='[Gender]' derivation='None' name='[none:Gender:nk]' pivot='key' type='nominal' />
<extract count='-1' enabled='true' units='records'>
<connection class='dataengine' dbname='C:/Users/aakash.chotrani/Documents/My Tableau Repository/Datasources/Sheet1 (Long-Term-Unemployment-Statistics).tde' schema='Extract' tablename='Extract' update-time='09/01/2017 08:44:17 PM'>
<relation name='Extract' table='[Extract].[Extract]' type='table' />
<calculations>
<calculation column='[Number of Records]' formula='1' />
</calculations>
<refresh>
<refresh-event add-from-file-path='' increment-value='%null%' refresh-type='create' rows-inserted='1708' timestamp-start='2017-09-01 20:44:17.161' />
</refresh>
<metadata-records>
<metadata-record class='column'>
<remote-name>Age</remote-name>
<remote-type>129</remote-type>
<local-name>[Age]</local-name>
<parent-name>[Extract]</parent-name>
<remote-alias>Age</remote-alias>
<ordinal>0</ordinal>
<family>Sheet1</family>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<approx-count>7</approx-count>
<scale>1</scale>
<width>1073741823</width>
<contains-null>false</contains-null>
<collation flag='1' name='LEN_RUS_S2' />
<statistics>
<statistic aggregation='Min' datatype='string'>"16 to 19 years"</statistic>
<statistic aggregation='Max' datatype='string'>"65 years and over"</statistic>
<statistic aggregation='Count' datatype='integer'>1708</statistic>
</statistics>
<attributes>
<attribute datatype='string' name='DebugRemoteCollation'>"en_US_CI"</attribute>
<attribute datatype='boolean' name='DebugRemoteMetadata (comparable)'>true</attribute>
<attribute datatype='string' name='DebugRemoteMetadata (compression)'>"heap"</attribute>
<attribute datatype='boolean' name='DebugRemoteMetadata (distinct)'>true</attribute>
<attribute datatype='integer' name='DebugRemoteMetadata (size)'>4294967292</attribute>
<attribute datatype='integer' name='DebugRemoteMetadata (sort-position)'>2</attribute>
<attribute datatype='string' name='DebugRemoteMetadata (sort-sense)'>"asc"</attribute>
<attribute datatype='integer' name='DebugRemoteMetadata (storagewidth)'>1</attribute>
<attribute datatype='string' name='DebugRemoteType'>"str"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>Gender</remote-name>
<remote-type>129</remote-type>
<local-name>[Gender]</local-name>
<parent-name>[Extract]</parent-name>
<remote-alias>Gender</remote-alias>
<ordinal>1</ordinal>
<family>Sheet1</family>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<approx-count>2</approx-count>
<scale>1</scale>
<width>1073741823</width>
<contains-null>false</contains-null>
<collation flag='1' name='LEN_RUS_S2' />
<statistics>
<statistic aggregation='Min' datatype='string'>"Men"</statistic>
<statistic aggregation='Max' datatype='string'>"Women"</statistic>
<statistic aggregation='Count' datatype='integer'>1708</statistic>
</statistics>
<attributes>
<attribute datatype='string' name='DebugRemoteCollation'>"en_US_CI"</attribute>
<attribute datatype='boolean' name='DebugRemoteMetadata (comparable)'>true</attribute>
<attribute datatype='string' name='DebugRemoteMetadata (compression)'>"heap"</attribute>
<attribute datatype='boolean' name='DebugRemoteMetadata (distinct)'>true</attribute>
<attribute datatype='integer' name='DebugRemoteMetadata (size)'>4294967292</attribute>
<attribute datatype='integer' name='DebugRemoteMetadata (sort-position)'>1</attribute>
<attribute datatype='string' name='DebugRemoteMetadata (sort-sense)'>"asc"</attribute>
<attribute datatype='integer' name='DebugRemoteMetadata (storagewidth)'>1</attribute>
<attribute datatype='string' name='DebugRemoteType'>"str"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>Number of Records</remote-name>
<remote-type>16</remote-type>
<local-name>[Number of Records]</local-name>
<parent-name>[Extract]</parent-name>
<remote-alias>Number of Records</remote-alias>
<ordinal>2</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<approx-count>1</approx-count>
<contains-null>false</contains-null>
<statistics>
<statistic aggregation='Sum' datatype='real'>1708.0</statistic>
<statistic aggregation='Avg' datatype='real'>1.0</statistic>
<statistic aggregation='Min' datatype='integer'>1</statistic>
<statistic aggregation='Max' datatype='integer'>1</statistic>
<statistic aggregation='Stdev' datatype='real'>0.0</statistic>
<statistic aggregation='StdevP' datatype='real'>0.0</statistic>
<statistic aggregation='Var' datatype='real'>0.0</statistic>
<statistic aggregation='VarP' datatype='real'>0.0</statistic>
<statistic aggregation='Count' datatype='integer'>1708</statistic>
<statistic aggregation='Median' datatype='integer'>1</statistic>
<statistic aggregation='SumXSqr' datatype='real'>1708.0</statistic>
</statistics>
<attributes>
<attribute datatype='string' name='DebugRemoteMetadata (ordered)'>"asc"</attribute>
<attribute datatype='integer' name='DebugRemoteMetadata (size)'>1</attribute>
<attribute datatype='string' name='DebugRemoteType'>"sint8"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>Period</remote-name>
<remote-type>133</remote-type>
<local-name>[Period]</local-name>
<parent-name>[Extract]</parent-name>
<remote-alias>Period</remote-alias>
<ordinal>3</ordinal>
<family>Sheet1</family>
<local-type>date</local-type>
<aggregation>Year</aggregation>
<approx-count>122</approx-count>
<contains-null>false</contains-null>
<statistics>
<statistic aggregation='Min' datatype='date'>#2005-01-01#</statistic>
<statistic aggregation='Max' datatype='date'>#2015-02-01#</statistic>
<statistic aggregation='Count' datatype='integer'>1708</statistic>
<statistic aggregation='Median' datatype='date'>#2010-02-01#</statistic>
</statistics>
<attributes>
<attribute datatype='boolean' name='DebugRemoteMetadata (comparable)'>true</attribute>
<attribute datatype='string' name='DebugRemoteMetadata (compression)'>"array"</attribute>
<attribute datatype='boolean' name='DebugRemoteMetadata (distinct)'>true</attribute>
<attribute datatype='string' name='DebugRemoteMetadata (ordered)'>"asc"</attribute>
<attribute datatype='integer' name='DebugRemoteMetadata (size)'>4</attribute>
<attribute datatype='integer' name='DebugRemoteMetadata (sort-position)'>0</attribute>
<attribute datatype='string' name='DebugRemoteMetadata (sort-sense)'>"asc"</attribute>
<attribute datatype='integer' name='DebugRemoteMetadata (storagewidth)'>1</attribute>
<attribute datatype='string' name='DebugRemoteType'>"date"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>Unemployed</remote-name>
<remote-type>3</remote-type>
<local-name>[Unemployed]</local-name>
<parent-name>[Extract]</parent-name>
<remote-alias>Unemployed</remote-alias>
<ordinal>4</ordinal>
<family>Sheet1</family>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<approx-count>594</approx-count>
<contains-null>false</contains-null>
<statistics>
<statistic aggregation='Sum' datatype='real'>440463000.0</statistic>
<statistic aggregation='Avg' datatype='real'>257882.31850117096</statistic>
<statistic aggregation='Min' datatype='integer'>9000</statistic>
<statistic aggregation='Max' datatype='integer'>1011000</statistic>
<statistic aggregation='Stdev' datatype='real'>197060.28943435065</statistic>
<statistic aggregation='StdevP' datatype='real'>197002.59354980724</statistic>
<statistic aggregation='Var' datatype='real'>38832757671.95005</statistic>
<statistic aggregation='VarP' datatype='real'>38810021865.350548</statistic>
<statistic aggregation='Count' datatype='integer'>1708</statistic>
<statistic aggregation='SumXSqr' datatype='real'>179875137000000.0</statistic>
</statistics>
<attributes>
<attribute datatype='boolean' name='DebugRemoteMetadata (comparable)'>true</attribute>
<attribute datatype='string' name='DebugRemoteMetadata (compression)'>"array"</attribute>
<attribute datatype='boolean' name='DebugRemoteMetadata (distinct)'>true</attribute>
<attribute datatype='integer' name='DebugRemoteMetadata (size)'>4</attribute>
<attribute datatype='integer' name='DebugRemoteMetadata (sort-position)'>3</attribute>
<attribute datatype='string' name='DebugRemoteMetadata (sort-sense)'>"asc"</attribute>
<attribute datatype='integer' name='DebugRemoteMetadata (storagewidth)'>2</attribute>
<attribute datatype='string' name='DebugRemoteType'>"sint32"</attribute>
</attributes>
</metadata-record>
</metadata-records>
</connection>
</extract>
<layout dim-ordering='alphabetic' dim-percentage='0.513208' measure-ordering='alphabetic' measure-percentage='0.486792' show-structure='true' />
<style>
<style-rule element='mark'>
<encoding attr='color' field='[none:Gender:nk]' type='palette'>
<map to='#4e79a7'>
<bucket>"Men"</bucket>
</map>
<map to='#f28e2b'>
<bucket>"Women"</bucket>
</map>
</encoding>
<encoding attr='color' field='[none:Age:nk]' type='palette'>
<map to='#4e79a7'>
<bucket>"16 to 19 years"</bucket>
</map>
<map to='#59a14f'>
<bucket>"45 to 54 years"</bucket>
</map>
<map to='#76b7b2'>
<bucket>"35 to 44 years"</bucket>
</map>
<map to='#b07aa1'>
<bucket>"65 years and over"</bucket>
</map>
<map to='#e15759'>
<bucket>"25 to 34 years"</bucket>
</map>
<map to='#edc948'>
<bucket>"55 to 64 years"</bucket>
</map>
<map to='#f28e2b'>
<bucket>"20 to 24 years"</bucket>
</map>
</encoding>
</style-rule>
</style>
<semantic-values>
<semantic-value key='[Country].[Name]' value='"United States"' />
</semantic-values>
</datasource>
</datasources>
<worksheets>
<worksheet name='Sheet 1'>
<table>
<view>
<datasources>
<datasource caption='Sheet1 (Long-Term-Unemployment-Statistics)' name='federated.0q6joke1k5a74g16f46951fn7fum' />
</datasources>
<datasource-dependencies datasource='federated.0q6joke1k5a74g16f46951fn7fum'>
<column datatype='string' name='[Age]' role='dimension' type='nominal' />
<column datatype='string' name='[Gender]' role='dimension' type='nominal' />
<column datatype='date' name='[Period]' role='dimension' type='ordinal' />
<column datatype='integer' name='[Unemployed]' role='measure' type='quantitative' />
<column-instance column='[Unemployed]' derivation='Median' name='[med:Unemployed:qk]' pivot='key' type='quantitative' />
<column-instance column='[Age]' derivation='None' name='[none:Age:nk]' pivot='key' type='nominal' />
<column-instance column='[Gender]' derivation='None' name='[none:Gender:nk]' pivot='key' type='nominal' />
<column-instance column='[Period]' derivation='Month-Trunc' name='[tmn:Period:qk]' pivot='key' type='quantitative' />
</datasource-dependencies>
<filter class='categorical' column='[federated.0q6joke1k5a74g16f46951fn7fum].[none:Age:nk]'>
<groupfilter function='level-members' level='[none:Age:nk]' user:ui-enumeration='all' user:ui-marker='enumerate' />
</filter>
<filter class='categorical' column='[federated.0q6joke1k5a74g16f46951fn7fum].[none:Gender:nk]'>
<groupfilter function='level-members' level='[none:Gender:nk]' user:ui-enumeration='all' user:ui-marker='enumerate' />
</filter>
<slices>
<column>[federated.0q6joke1k5a74g16f46951fn7fum].[none:Gender:nk]</column>
<column>[federated.0q6joke1k5a74g16f46951fn7fum].[none:Age:nk]</column>
</slices>
<aggregation value='true' />
</view>
<style>
<style-rule element='axis'>
<format attr='subtitle' class='0' field='[federated.0q6joke1k5a74g16f46951fn7fum].[med:Unemployed:qk]' scope='rows' value='' />
<format attr='auto-subtitle' class='0' field='[federated.0q6joke1k5a74g16f46951fn7fum].[med:Unemployed:qk]' scope='rows' value='true' />
</style-rule>
</style>
<panes>
<pane selection-relaxation-option='selection-relaxation-allow'>
<view>
<breakdown value='auto' />
</view>
<mark class='Area' />
<encodings>
<color column='[federated.0q6joke1k5a74g16f46951fn7fum].[none:Age:nk]' />
<text column='[federated.0q6joke1k5a74g16f46951fn7fum].[none:Age:nk]' />
</encodings>
<style>
<style-rule element='mark'>
<format attr='mark-markers-mode' value='all' />
<format attr='mark-labels-show' value='true' />
<format attr='mark-labels-cull' value='true' />
</style-rule>
</style>
</pane>
</panes>
<rows>[federated.0q6joke1k5a74g16f46951fn7fum].[med:Unemployed:qk]</rows>
<cols>[federated.0q6joke1k5a74g16f46951fn7fum].[tmn:Period:qk]</cols>
</table>
</worksheet>
</worksheets>
<windows source-height='30'>
<window class='worksheet' maximized='true' name='Sheet 1'>
<cards>
<edge name='left'>
<strip size='160'>
<card type='pages' />
<card type='filters' />
<card type='marks' />
<card mode='pattern' param='[federated.0q6joke1k5a74g16f46951fn7fum].[none:Age:nk]' type='filter' />
</strip>
</edge>
<edge name='top'>
<strip size='2147483647'>
<card type='columns' />
</strip>
<strip size='2147483647'>
<card type='rows' />
</strip>
<strip size='31'>
<card type='title' />
</strip>
</edge>
<edge name='right'>
<strip size='160'>
<card pane-specification-id='0' param='[federated.0q6joke1k5a74g16f46951fn7fum].[none:Age:nk]' type='color' />
</strip>
</edge>
</cards>
<viewpoint>
<highlight>
<color-one-way>
<field>[federated.0q6joke1k5a74g16f46951fn7fum].[none:Age:nk]</field>
<field>[federated.0q6joke1k5a74g16f46951fn7fum].[none:Gender:nk]</field>
</color-one-way>
</highlight>
</viewpoint>
</window>
</windows>
<thumbnails>
<thumbnail height='192' name='Sheet 1' width='192'>
iVBORw0KGgoAAAANSUhEUgAAAMAAAADACAYAAABS3GwHAAAACXBIWXMAAA7DAAAOwwHHb6hk
AAAgAElEQVR4nO29+ZMcSXbn9/E4MvKszLoPFG40utE93TM97Jmdi0tyR6TIpXZtJa0kM5n+
K5nJVj9Lookr2Q6XpDhccrg9S3JOG/Yx090AGkcBdV95H3G6P/2QhSoU6soqVAGF7viYtTUQ
ERkemfDn8fz58+9TIiKkpHxJsU77hqk9pbxKnLoBGGNO+5YpKWfGqRtASsqrRGoAKV9qUgNI
+VKTGkDKl5rUAFK+1KQGkPKlJjWAlC81qQGkfOFZr3fRev/1qYEMQERI4hgxhnjr/1prjNEY
YxCRdAEs5VwiIvzyzjIrtc6+553BbpJw/86niCjCTImKJzS7EXlXMJaLK0K2Msb0+PB2oykp
54Eo0SysNxkpZbkwVtpzfiADUEbI5PJEiSCdDTrWBMWch2WBYGhtNiiNT6dvgpRzx4OlGlGs
ebza4J/dmtlzfiADwLLIeDlmZseo1oeZHCnR6EXkbME4HrMXLmOMxrIsRATbtk/7e6SkHBsR
4eFyA9u2qLYDEiN47u4uP9gbwHKYvXgRgAvTOQDGvNwzV7nP/8QpKadIECU8XmsCYIywUu1w
Zaqy65o0CpTyheX+Ug29NR+1LMXcSmPPNakBpHwhERHuL9WxlNo+trDR2hOgSQ0g5QtJog0r
1d2hz2YnoBvEu46lBpDyhWS90SVO9K5jAttzgiekBpDyheTxWhPb7nfvMPAxxmApxUf3VjFP
uUGpAaR84RARljba23++aOawov7fqy2fh8v17WtTA0j5whEnhvVGF+gbwM3sGmOqCvSjQf/0
+QoiQjeIUwNI+eKxVu+QbCW/2VGLK/kuU9bGdgRordZlcaPN+x/OpQaQ8sWg0Qn4ZG4dEWFh
vYVt9bv2tFoj68C1bB2d9CNAlqX4q1/c4+FKY8BUiJSUc87Ceov3P3xEFGuWNrf8f2O44q4B
MOIlZLstEncM6LtJllLpGyDli8Fms4dlKf7xNwusVPsGQNzlSr7/Z8eCKdb2fC41gJRXHhFh
o9kD+u6NteX+jJlV8s5OyPOiW01XglO+eBgjVLcM4AkiwlV394h/MdfBxP6uY6kBpLzytP2I
IEp2H4x9ruVbuw6VXMOkWd51LDWAlFeetXoHx97dlUfMGkOZ3ZuzlIKveo8xesdYUgNIeeVZ
q3dRT2V9ighXnL0TXoDLRZ9KtLR9XWoAKa80IkK16SMi2xNcSUKu5Wr7Xm8p+Fp2DqM1mXAz
NYCUVxuRfgjUhF1m/M8wWlNO1hn2Dt6bfr3QoRTM8x3vk3QhLOXVphfGdIOYIWnyR+Nz/H09
wbODQz9jW/AvK58xlJFBZVGEbqdDLp8nDCOynksYaxwLRNnYloWIwXFSe0p5sazWOliWYtRu
YSn458MLHKCBtYuy13eXBtYFWp6foxcr8p6FdnKYJCbrgFEWJowoT15gcrScSqOkvFA2Gl0U
MKKaiAiK/qrvoNJUgw3ZRrDcDDoMyLgZugYc20ZZgqUUYRwDamcSkgpjpZwxcWL4+MEaH91f
RYxh1G6f6D4DyqLYVIZHuXxtmG63x8W8RzdMyFiCWBncS1Z/x02qC5TyAogTzf/1d5/QC2KU
UoiOGC9Gu0KhgzKwAYyNjwNQKQ8BMOR6x24sJeU0mFtt0PVjLKvf4T3dpuiezOtIw6AprxQi
wv3F2nbnBxixmpxg8AdSA0h5xdBGmFvdEbgSEUas1iGfOJzUAFJeKeZWGmi9290ZO+EEGFID
SHmFEBHuLVZ3uT8miRnP9A75FEgUIgeE5lMDSHlleNb9AbCTDpXMwetOIoZwRaGb/r7nUwNI
eSXoj/61Xe6PiFCmiX1IL9b1HkZfIq6XEZ3sOZ/mLqSce8Io4Zd3lvn4wRqWpRAxjAYPueRu
crnUPPBzJgqJ6uNgOYhMkNTu446foD5ASsrL5D/8wx02m73thS4JO/zL4TtkD+m9IkK8AVij
/QPKIm6N4ZTrqMzOGlbqAqWca/ww3rPhZUatHtr5ASSO0MH47oNqmLi+WzA3NYCUc83jtSa2
tXu311Vn9cjP6YYG9UxRPKXQ3cquuUBqACnnmiciV08wUZdrhcMXvsQYku4Q+y0PC6Po9s5+
gdQAUs41SxvtXe7PpKyR28f9ETGI6bs3pt1DZGz/GyqbpJnfzlhODSDl3NINImrtnfi9iHDN
Xdn3WtPpEjzOkFR94lYO1MGTBJOMI37/vmkUKOXc8nh1y//3axjLIzHC9cr+YU/jOwjTRE0N
CByWHGfliGsWqh2kBpByflnY6Pv6v+t9wFQupBm5FPZJexYRdLAV2lSD7UXR0TWIVGoAKeeX
xY0WOuxyaTggY0PRjfa/0BhMVIDj7MNSfe8/nQOknEsanYB2L2JYqrhH9FLj+6DKJ2onfQOk
nDvqbZ+/+Ok9bEsxbVeP3OxifAss90RtpQaQcq5Y3Gjxlz+7t13idMbZX+HtCSKCCbInbi91
gVLOFT//bJFEG5RSJGGX2fzhIleIQUe5E7c30BvAmJgHdz8HEXpWjpGcRa0TUnQFbXvkHRsr
W2RmcvTED5KSAtDshtt/HpEa3hETW/EDYObE7Q2mCoEiWxiimPeYX1ig7YxRKeTAAsdoVpaX
uP7Wu2itMcakukApJ0Ibod0Nt3d8TVqb/RXeQ7pT0lUYbDihGNtgynAmodftks3lKA2PMzVW
od4JKbgGbeeYmJwh0cm2HlCqC5RyEtptH6XUtr7UBbe+Xe7oWUQE3eqRdGYOvGYQBjIAy8ny
+q03ANiSByJfPHGbKSn7UmsH26O/FTa4WNl/G6OIkFS7xM1LYOWfq810Epxybmht+f86Dvnd
7EcH5vxL4BM3Lz5354fUAFLOEc1ugIjwlvk11wrdfa8REZKmDVbhVNpMDSDl3NDshIyGj/j2
yNrBi186IekMnVqbqQGknBuavZCL7gb2ISu/SSME64Bc/xOQGkDKucBIPwRaUvtPfKG/6SVp
F/fd6XVSUgNIORf0gpgwihl291/5FZ2gqy1Epk613TQXKOVc0OgEoCPKGb3nXLTWQ3dHEC4O
nO8/KKkBpJwLGp0AT3w8e/eyr0QBSWscnOEzaTd1gVLOBY1OQNHy9+xk1O0I7MqZtZsaQMq5
oNUNGVLdPfNb3Suc6qT3WVIDSDkXNLshQ9ZumXNJInR4ejH//UgNIOVc0OqFFJ8xAN2OwDo7
9wdSA0g5B7R7IX4YU3nWALr5M3V/YJ8oUK+xyX/+h5/hWFl+749/n7QWZMpZc2+phtEJleyO
ZqckMTqoHE/p4QTseQPkK2O88+ZNMvncWbedkgLA3fkqduJTcHc2tSTNs3d/4IB1gNrmAhuL
IclBF6SknBKbzR7rjS4F5fNEBFqMIWnuL2572uw7B8h5BVTZS92flDPn7kIVSylKVm97DUA3
ewgTL6T9fQ2gWB6lkoM79x69kIdI+XLypO6XUorS1hpAP9+/eGopDyJCI4nRyd76YHCAAXS6
PZQ43Lhx+VQeIiVlP1aqHZrdfvLbkzUA0+5gzOklvLWN4TfvvkPjgH3q+7tAuSxePof1Anyw
lC8nfhjz448fYymFiFBSfQNI2jlOK/TjJwmfvvU6SanE6sTovmole+a4nfo6cwvLhLGD2XoU
Y2Ie3LmLnwhiEvKlMt1eSDFj0LZHzrKwC2UupLpAKQNQb/v8+U8+p9ULUUqhwx6Txf6bwETu
qUx+Y6359PoVgpERAKoz00TLa3jubgnFPQZQHJ6gmPUIel0SbXC3irB6hTI5JWRsw0oHKsUc
WApHEjZW17l8azLVBUoZiB/8/W06QQz0ffQLMs+Qm2DiGJMMI9bJNH6eIMZwZ3Kc5vTUtl6Q
yeVYL+a54Ie7rt03ymlpn7sPHnJzvcbV6TEwhiDoMTY5Ra/b49alErVORN4xGCfH9PTFVBco
ZSC6QUw7iLG3tHyMTngnt4BlWRg/QtlDKHX8BAVjDF2tUSKsjg6zefPGHhd+bWqS2bl51FM6
QvsagFYe3/3Od7g43d97aTkeN19/HYCRSl+GeuoZOUaPzLEfOuXLx2Zjd8nTcrzC7FB/VDah
xUn9/6pt8cl3vtn/i1L7ulHtyQlqc/M87ajva2oZzyU+IGyUkvI8rDd24v3GCG+6j7YXwEzk
nMj/FxGWZqbAsvr/HXQPx+H2O2/R1v1dZzpJDogCZW16zYi9m9NSUp6PjacqvrthlTeKOzW/
THQyjf+u0TRmpge6Nh4q8cmbr9OJQm5PT+7vAuVyeRq9pTQNIuXU2Wj0Ba+M1nzDvY275fGI
CBJnjp2fLCIsjY4g7uDGE4yO8ME3fgudz+3fxx/cvUejHpBw5sl4KV8iolhvyx9eSu7y9sjO
6C9RgDBy/HtqzfrF2WN/Thf6sor7rgOQH+b6zRwneyGlpOzPaq2DCAyFC3x/9OG27w9gfA3q
eIUukiTh7oVpktLJlZr3GIBCYds29c0qMaQJcSmnxkazv9r7tcyDPYXvJHI4vLjvbvwk5tMb
12hPP1/axB4DyFfG+M53RlFKHeNxUlKOZr3excQBF0p71d+OswKsk4SP3rhJMDH+3M+0Z8qh
lOL2x//EL3/5EWkgNOU0qbV8CtIi7+xd6T1OBKjq2ATjp6MPun8YNP/8uuspKU8TJ5pa22eY
BvYe9ydApDTQfUSElamJU9sss68B1DYX+eVPPiQ+lSZSUqDa8hGBKae+55xua1CDTWT9JKY+
e/yoz0HsMQBjQrTJ4x6z8nxKymEsbrQQMUw4rV3HRYSkmxtoRBcR1oYrSOb04pN7DCBotTGO
w7tf+1qqmZJyKogId+arqLjLRPYZvyIOMfFgup9iDKvPGfV5ln1VIbKWUF1fT1MhUk6Fasun
1vYZorVH/Fa3zZHuTxiGbCLcHy4fa/IrYjBGENP//97zsv9KcD5noXWa3ZlyOny+UEUBE1Z9
l6cziPtjjOGjWzfpTU0eu92Nxw/5/N4SxUzCxI23kfoivdwEmbjNzI3XaS3P7X0DiAj50hA4
Kl0JTnluRIT7SzUAxqzG7nPR0e5PE6F3wni/k8mQzXnkiyVW5xcolkrkPEPoxzyeW2T+waO9
b4Dqwj3+6m//kVJ5Ck2qnZjyfKzVuzQ6IUbHXMh1to+LCElDgzq42qOIsDI+1k9xPgFKKWau
XsXVPSbKExRzFr31Brlijqlrs7ivXdprAF6+xLVr1zHaIt3YmPK89GVPIKub29VfRIRks0PS
ucquhKBniOOYzdkLJ257ePoiz75fpmd35xvtMQA3m2f2wgxKuWkYNOW5EBEeLNdRSjHNGs7W
QJ5Uu8Stq2BlD/38RrGAzh8vQe647DGAbLHMrVvlM2005ctBteXT7oWIMVzPrAEgWhM3x47s
/GIMK5PjZy6POJBzJSLbag9xnCBi0NpgzI4KRKoEkfIscyv9VV87bnKx0E+AM0EA6ugBtonQ
vjBzps8Hg2rfiub2nXtcGinwoJFQ8YRmNyLvCsZycUXIVsaYHu97XKkxpADMrfSjPrNqlYwl
iIDpKQQHjugjjy5MI32txDN9xsEMQNkMlYoY10M6c3SsCYo5D8tSCJrWZoPS+PT2myIlpeNH
rNU6GBGuuavbg6L2s0cOkE0x1C7OvpCBdMA3QF+0SFtFJi5cYXJkiEY3IucIxvaYvXAZYzSW
ZSEiqS5QCkubHUQpnKjFpUqv3zd0jImHsA4Ja4oI89PTKMd5IftRBjIAZblcvnZt17Ex79nZ
ebpslrLDg+U6llLMqBW8rV5meuGR/n/LGOqXL76AJ+yTrnOlnDphlLC40cJozS1vefu47jmg
Dh5zRYTFyXHEeXF6JKkBpJw6ny/WiLUhG20ym+9Hf0QEExwe+kyShNrM6WZ7HkVqACmniohw
+/EGCrhmL24vfqFjTHJ41udm1iMpHJwacRJinVDtLhMm4b7nU+2rlFOl2vJZrXeRJOSN/Mb2
cdONQR287VFEWJsYO/HClzYGQXAse/t+DX+DIHpMxgqpdatMlN7aFuV9QvoGSDlVPp3rj/5j
epVRb0dWIelmDi17FCYxzQHlDZ+l39lX2Wj9hiAJEBE2O/Po5HM8O0QpyKgmm525PaHV9A2Q
cmok2nBvK/X5hru0PZhLEqP98qHD7UaphMmcbA+KEUMUL+PZAa3eXYQiNiu78uyUAsusUOvl
GMlPo5QiMQeI46aknIRHqw16YYwd1nm9sJP7rzvRoeFPMYa1sdETuz/NYJOM1a8w46g2rlrZ
N8nUtsAkD9nsLiIi1LqP0zdAyulxb7GGAm5Yj8k6fVdDRNDtw92frtZ0Thj9MWIIo0W8Adde
bQuMecxqq41DPTWAlNNBa9NXfoh93i6s7pyII3Q0fqj7szZSOVHsX0Ro+ptkrL1Kc4dhKfBU
31VLDSDlVFipdfDDhBmzQCWzI6eg28mhm95NkrAxebwtjyJCYhLqvQUwqzuh1hOQGkDKqfBw
pQ4m4e3sws7kVyfErQocUvOraVv4Y8eTOYxNQrX9EZ4dPnccM50Epzw3IsKjlQalZJ3ZQrB9
PGlEiBw8uosIa6Mjx9rzKyK0/JV+5z8FUgNIORHGyLbWTq3t0+iGXLWXsZ8KfSbN4UNH/yRJ
2Jw+ntyJNpokWTnxcz9L6gKlnIiPHqxyb7HGv3j3CnOrDSQOuZ6vbp9PajHC3sLpIkLLGHpe
hvZQkXhoaOA2+wtea2Ts01OtTQ0g5dgk2vDx/TW6Qcyfvv8ZrmNR1hvbK78SR8Tt0X1dmyBJ
+PgbXz/RZncjhjhZHjjkOQipAaQcm3uLVdq9CGtrtSmKNTft5e3Fp6SZgNoreCUiLI9Ujt35
RYQg8Wn6i2Ss0/H9n5AaQMqxMCJ8eH8N6M8BLMvCxAGv5ftxdTGapD20r+8fa83KpeNtdtFG
s9G+h0WVjHX6WyTTSXDKsZhfa7LZ6DESzfOe/jl2UGNYrzPqbRWfbvoHRn5WSkXiocEKYUB/
5N/oPMRVmzhn0PkhfQOkHIMgSvjJbxZANF/PPuRasccb8c+oRy59AQdD0irtm/aQJAlLl2YH
zvcREWq9ZRzWzlQaaCAD6OsBxbiugx+EZDMuYaxxLBBlY1sWIgbnBW5lS3mxaG3461/ep9b2
GY0XuTLUr/iYd4W8GwFg2j1Mcm1fv2ItlyUcGawOAEAnbKKTR8+1yjsIA6pCGB48nGN0KE+9
2cQ4eUwSk3UErWwkjChPXmBytJxKo3wBEeD9jx4xv9YEo3nXe4BCnpHsEeJGFlHuHi0frTUL
N672tWYHkDrRYugED8hY5qxlgQbVBVK4tkUQJXiuS9eAY9soC2wFfhyjlNrebJAKY32xWFhv
8encBpalGI4ec3mst+ca3fHR0aUDR//e2N41gYOodxdxrb1tnAUDvgGEoVKJ/NAQcRRzsZCl
GyRkbMFYGTKXLIwxqS7QFxAR4eOH61iWwgvW+f3K59jPJNuLCLqRQdl7w5uJ1ixcvogaMN2h
G3UxZgn3ENXoYyHC/V98hDc2TrUa8tbXr7I+v8rYzChG1KC6QDYTU1v52lsVVIfctIb8l4HN
ps/8WhM7bPBHpY8oZ/rurcQRJkqwclmMv//oLyKs5jz8AcsaGRFa/kM86/RcaL9eZenxJsN2
GaIufpBQW6vRqjXRYqVRoJSDERH+6fNlJIn4F9kPGH+qwF1cMySdSyirhlIFsPaO/oHWPLp5
a+DIT9PfwFXNU3t+gNzIGN/9V9+h09NsrljkCy6jkxUc1yEydmoAKQfT9iMeLNeZ1PNcruxs
OpEkRnfKYGURZvadqIoxPJiaGDjXJ9YxQfToVNMcnuDkC1TyUBnrP8vM9Z06w+dmIawXxNyZ
36TrR2hjqLZ6/PrBGsvVNolOo0ovGhHhV3eWSaKQ9/KPdg3iuhUh6vBJ7YZts3HtysBtNXqL
ZKzoOZ74ZJybN0CrF/LXv3yAbSk81yGIEpTq+4XZjMMfvHeNq9ODx5FTno/1Ro9PH20wpeeZ
ye3k34gxxM3CoWnOcZLw4M3XYcB1IT/uIWblsFueGefmDQD9vZpKKaJEY1kKpRS2ZREnhvc/
fEQYJ0ffJOW5MUb4Lx8/RpJoz+hvuj4iEwd+VkRYKJcIRkcGaqu/weURtno5b/lzYwAOCRIH
B64hdIOYX3y2lK4xnBFPV/m5Pb/JarXDtH7ETC7c0vUMiNd8oo0JUAfr9/R0wuJr1wee+LbD
Oraqn3UlpAM5Ny7QsNXh3+bf5zN/ikdJX7jIRqPor0S23XE+frDGzYujTI0crjGZcjyiWPN3
H8yxtNnCsiyCMEElPt8qzvXd0F5AsDLe1/Y5pKeKMczNTKHz+YHa1UbTCx6ReYnLRufGABQw
4iX8dm6F32bvlrcfV2e5Z3+VH3/0mP/xd9/czkVPeT5a3ZD/7+f32Gz2UEoBGhHhNbnLeDbp
54HVHbAqR96roWDzyuWB2o11TL238MJWfA/i3LhAR/Gt8iK5cI31epdPH63ve42IEEQJK9UO
9bafuktsyZIf8DusN7r8+x9/9lTn72OHdb4x1Nf1F99HBwf7/E+3szg1caS+jxHDZmeeWucD
bFl+aa7PE87NG+Aosg58L/spf5MM85NPFrl+YYS8169Ko43h/lKdDz5fodb2SbRBobgyVea9
12eYGTs8B/2JoaiX/a9xBtQ7AX/+k7vcuDDCV69PUshlUMDjtSY//MV9tJF+HpcxqLhLWWq8
nXlEwe3PCeKaA9bRkuU9ranNHF7V0Yiw2XmEJcu452ToVXLKw6TW+kS5QKaxSPiLf4eyDv/s
jzYvMue9w2uzo3z9tSnmVhvcW6xSawX7ukXGCG9fm+B7b1/Edfa/93qjy49+Ncd3357l0kSZ
hfUWH3y+wleuTXDjwmDRjPOA2ZInuTJdwVIKbYT/Z2uEFxGUAs918Fybth8h0jd+FXd51/qE
W4UqeXenO5huj2D1wpEGICI8KJdY+Mqbh15T7S6AmT+sOPwL55V5Azzhu5VFluozfL4Idxc2
sVQ/XGpZCqMT3LjJlFoHEZbULCpT4pO5dRbWW7xzfYJLE2Uqxey2sYgIP/90kVrb589/8jlD
BY9mJ8SyFIubbf7wm+wxAhGhG8TcX6qx3ujyrVuzDBXONjeq3vbJZhxy3v612OJE86N/muPz
hSqvzY7wB9+4zgf3VlhvdLd/I4Aw1oRxf/eWGEMlWuB3CneYyO1WWhAxRDXvwM6vtcaIwXVc
Eq1ZO6Smb39zyypi5rdlU84L5+YNkKyv0vmL/xW3HGAVs0gcY3yDJDaS2NilGLvYjy7caxd4
33wPy+53BqMThuMl3vUecDnfw91qvhcrbndH+CS5QeT1E7JE4NJkmX/17dewbYuVaps//buP
KcSbBLmZfdwg4Y+/dZOr0zuTwEerDf7yZ/e2XSfXsfmvfusq12eGB3ajnsxXNps9wkgzNVqk
kHX3/byI8Kfvf0q7F/F7717h2vQwq7UO9xarCDCU97i3VGO93t1OSx8dylNr+xgdMxY+ourM
oDKF7fupuMs76lO+Xt7Yd9NJ0ugS1a7uG/IUER4MFdmYnuLSw0cYMdz/5nsHRohaQZ0gvI1z
iklup8X5MYC1dZo/+AFKaZAWkAOV2/5RlVTxZupY2Swi8MPqNVaYYUatctNb4Wqhe+CrNdTw
SXuMO8llOs44lm1zfWaYP/zmDf7sH+9gln7F9ysP+GH9dTa9a9hxm0vymGWmibPjFLIu/8vv
v43r2BjT74zV1m5BVhHh3/7OLaZHj97zmmjDT36zwG/m1rfFpZSC8UqBf/O918lmdr+Y7y/V
+Muf3MaybcAin3XpBTFqa+Fwew4TdZgyCyy717EcD2M0t+IP+d7IKo3I5te9GWJxKKku13N1
xrL76+uITgjmcwj7i1Y1RPj4G+/29fxFUHGMHKDt78c9mt3fnKqWz2ly/gzgkLxxxTLZ2QDl
Zoh0fzT3juHEaYHFrsev/OtUvSvMjpdZWFrmfyj+IyNZTaThdrvC9UKLomtoRhZ/03yTuneZ
b7wxw7ffmuXuwib/6ZcPUQrsqMkVNc+mHqJhjXPt8gz/zbdvHvoMvSDmr395n6XN9p7RXkS4
MlXhj7/9GtbWOa0N/+ff/oaxxq+oWB0+5KvgFvrRnSRGmRiFYUJW+W7xAaNewv1Ogb8Pv86U
LPJHY3PH8rnFGJKNgLh7Y990h0RrPrxxlc700XLmYRJQ73xKxj6eevNJEREwfr++sJ3fc842
bRyEyN6pVfBKzQFEpglX5vBmDRn7YEMxYYAEGpVRKNdFOX1XyVZwuRgyk/uMv6n5LG7c4i3r
LiPZvk+cseGrlZ3CDuWM4V+PfMJf1OHDexavzY7ws0+XAMOF8HO+U3pExdOIQDW0+bPH36H5
9iXKxf2rIWpj+POf3mWj0Q87GqMpR0uUpM2ifQ0rk2NupcEHn6/w3uszGBF+/XCder3Of11a
ouJpZv2f8ElvkkmnxWSuS87W2ErwbLY7+mulLmOZn5J39ECdX3SC6YbonoP2c4i5vEfUSoyh
g/B4apzO1NFyhpGOqHdv4x5TuvzE6C5v5kKuF7OEWvPjWovYHkLEgPa56vm8O1wkMpq/2WgS
22WMDl+tNwAAYnAL93Am8rtGUBGD6QUkDQcdjPUluSUCOrhDVZwRD2Xv2Ls28Iv6GF8vV7eL
ORzEZuDwg+738AplgijmUnSbPxjdO7K+X5sl/8Yf8DtfvYw2ho8frHHr0tj2xPXDeyv8w68X
EB1RTtZ5KzPHm6UWloLNwOUXvausuDdQlsXoUI6OHxFECVfjT/n+8KNTj5mbMCTeBB2UQVUO
rOEbJgm3L12gMTODZI4uiB7piFrnNq5qv5A4v9E+/7wccam4M2FvRSEfN0PGM4pLhSx5Z+e5
N4OAv92Iebskr6ABABgfb3weq5RD/ICkY6G7BcQMg/L2TsbEoNQmdr6NnYuxCtldxmDCENOJ
sUfyqANSEn9ZH+Mj+5sUwxX+2+GPyO1jNI3Q5j8Ev8v//Iff5L98/JjHa02mRzrcKhQAABMD
SURBVIr8m++9jh8l/MmPfsNo9w7/rPCIsWy8x4ASA/+peo3l7K1t4zaRz3+f/zGjWb2nvWcR
EYhDVGbnDSQ6QTcCrKKD5WX71yQxSSMmbk2AdXiGrdGaT2em2Lx+9cj24Unn/wxXdV5Q5w/5
ZrHHzfLgekMAfhKTtZ1X1AAAJXVQwcGd/iAkQak1vJkAy/MQnRAuWBgzg+3O405olOOAsnat
SSQG/mLjOt8ZmmdyK2QoIqBjsHeiNz/cvMpK7itoYzBJhLIz3JgdxhiYf/SQ/6n8cwruTjRE
tEbiCCvb31EVa/hh7QbL9hUyxucSj/n+6CISBSjb3nbn9nwtY0g2fOL2OO7QBs54DokTomUH
Y2ZBfCynBmJhdKFfsvSQskVPvt9cMc/jd74y0O8bJiH17me4qnumnV+SDu8WQxylyDsWs4WT
54adSwPoT/ASYiBjWVvRj1NEpG8EUy3iTQsdb2UvioB0gQiFRtkRyo1xhiLsUh5t+jWmRAym
1SNu5TDREMrysXM+7pjNapTnP3a/xRW1wLuFBd7vvEnLu4gxmm+pX/C1cn37MUwUEq06mHgY
p7CCO+ahHIfEQCe2yTu6v2IqmnC+PzBkpqO+4YogYYBEBtGQtD1McrHfqSXBducxSQ7hZKVH
ATYRPnnv3QMjPLt/UmGtdQdXVc+082sd8t2hHtdKxxvxD+JYBtDdXOL+ZsBI3qbWDim5hsT2
yDs2VrbIzOToiQ2g2Wrxi3/8exxjEKXwh4aIc1lytTpj6xvMtjpkTlN4SwRMHazykSMhUic7
tYmVzyFiiFdDkt5lsJ7qGGJwi/dwxgs0IotKxqAUtCKLP2v9FllC/ruRX0Ojh4kcUILulfoy
gkptuWnreJMtrGeyKeONLnH7BigbJes4xSbaz2GSrbcf9okrLB5ElCR88Obr+APKmTT9GlH8
2ZksdPVXsftBg7eyTd4dGVxS/SiOZQDt+gYPH83jlsYoOPRT6USzvrTK9a+8S7mQwRhzopya
uu/z/sN7B352eGGRrzxawHlJkiuW2sCbaZHUNHHv2r4TRiV1shfrKHf3iFkNMyQCE7QIlqeQ
Q2pmKZpkRtewh/pGIFFIsDiGHFJm9Cy4Xy6x8Natga7VYthsf4yrus/drjEhjsQULE3ZEcqu
ULQVQj/KdbVY5DRt7FhDqpfLU6qMMzVeod4JKTgG7eSYmJgh0cn2yH+SN4BtWyjL2o5/P0vz
0kVua8NbSysvxwhkgmhJEDWGZR/ws8kIul4nM9V346TXQ+WyjOf6acXRkoOySkcMEMPEVQ/d
qKFsg+g8yqq80ES9uhiWb76GdcB8TERoBVUi3cK1ikS6S8byDwwgDIIxCWNWi/dGXMoZD0dZ
L+Q7H8sAMtkC1672Q035F70nRSlqVy/zKcIbiyt4z7hDIkKYJPiOTZDJEHgekesgwHCrTSUI
yTjOyX9UpRB1xOKPUiTdcezGAnGrgIkvYWcXyUxnMH6IDi8yUGDeymMkD092gD5HP+hr68eA
whLBsSxsx9nWe+1kMsS2hbZtItehl8tRnxhHvP39fhGh7q+SxA9xLEEnYPN8HpjRIV8vdHij
PHTgAHhWnJtJcK3X5e8e3BvoB8htbHLr7j3y2hAr6Hgeq2OjNGam0J63tzKJCLbvM7yyyuzq
OmUjzz2xFhG6WvN4aoLhVpuJbg/HfaKLmYDaitaIxs7MIdrBmCsnbq+tEzLCHsMH6CUJ9UIe
bVk4WjPR83EcB2MMC1mPR2/dQmwLZQxut0ex2URQtCbGSPL5gYrUiQh+3KMTrqJk5dR8fRHD
a5k63xgZeinp6K+kAQBYYYQVR+iMh7jO4EOQ1hTW1hlfW2e83SXIuGxWyvieRyEIKHa6lPyA
PGDZ9oHJaSuuw4O33iApFEAEr1rja5/dJb/fRF22wp77uAiD7EVIkoQPbl4H4Cv3HpDfcsF0
krBYyDP/+mskTxaBRMhtbHJl7jG1Spm1164fqwrjfvSiLi3/PhYdbCWnOt8umip/PFXCfs5n
PAjRmp/96iFXr4xxd67Ot9+7BjrB28qheaVSIZ7GeBnMAa/pQ7FtujPTdKeneKw1YlnbHaQB
/RCp1mTaHbxOh0wUM7GxyYQ224ln81mPh199G57sL1CKcGyU+xem+cry6t63y1MdP04SLBEs
xyFKEhYqZRLH4UathrPP3EJEeDxUojs5AUrxYdZj5vEinUKe1ugIUeWZfbpK4U+Mc/uJHOFz
9lY/7tHyPzv10kQAJB1+e9w7s84PkEQR67Ueo8UmXa0wOubPf/gxN66M4ZsvszSiUvtv39s6
Hg5XCIf7KdDVS7NEH/+G2SBi1XWYe+etnc7/FNUrl1nbrDKtDSJCL0nI2fb2ZLKnEz5+83W0
65JrtgiGSkTlfkjPf7zAmwuLeM8YQctoFt+4ud2Ro0qFR5Wj9+eexjDtxz7N7mdkTqkm7xO0
jphyOvzWeIZhb/+8qdNCWRYjpQxNbeNGTXqJxexkiSCMCYx9vlygH93/nMQkhEmXKGmhjU8+
M03Rezn+4S6ShMl7D9i4ehmTPfgfLdNo8vqnt1mZnqJ6YYapBw95rVrHIHx87QrtQzaOZKtV
Ls7NM9ntIUqxMlRk8crl/ij/AhERulGLTnD31NTa+qvmPSacgDeKDrOF/Mv/N+UczQHWO1X+
9KP/iE2IbZntYIk2CqPGKOcu4TnZc/GjHYkxO363CCNzj7GMZvP6taNHZhHcdhuAuFQ6tQUu
ESHUEY7l4GyleBgxREmMFg2Yvv4MECRtdDJ3KhtYRASlO7yWi3hzKE/+eSJxZ8D5cYEkIaO6
e2LPtiVYskGzV0UYpuBN47kFXGv3D9kPg0YkJsZIgjYh2vgYCbFVDsfOk3GKeI53qqG2WCc4
1jOT5ae/g1LUBtTIfHL9cYpHH/18MQ1/Ba1rWPQwYmNZQyhlk+gWtgpRCKidaKuC5ypNZIzG
lS7DjmYiI9ws5ci7x68L/CI4PwZwCEqBqwxQJYyq9AIbQxbb8lDKRUSjTQdbhVhqK6pCP+Ru
AfQTIAkjRUM8bKuIZWWxlIdS/c6bsQvkM4MJOkHf4JrBJkH4AFSejDtBOTuOfcSm/mfRRpOY
hIydOXBk1EZT7y2ilEXOHSPn7rwJgySg4y8R6wZgY1kunjNOwRuhF7XphQ/IWAE72yf6vyPA
Wawniu5xK9vjneES7jF/i5fB+XGB2mv84Nf//sDVx7PiybfXosCaYih7gYydOfQ5nlQw7Bdx
k+37xFKinL9Jzs1tLUCFeE4GaysKFOuYdrCOY+fJuyWCxKcTPEDRA1Uhl5mmkClvR0VEhF7c
pe3fx1UdAIwoEsmilNs3XmliK7PLUxKhr32vDPYZlRd9FqNDJuwuX6+4jHqviKtKagC7EOkb
ghYHyGBbOWy7iGsXyLpFXMuhE3XoBvM4qr5nUVcEEnFQ1iiJbuGoAC15cplZlFL44SNcK0CA
xDhYSu+qf2sEYuPh2KMopYiTBrbqnXrs/XkRETzTYipjMICrhJvFDCOe98p0/Ce8Ei7Qi0Ip
cJTgEAMx0EX0JpEGP7D6bpfyD6xY3nfVEmBtO0rq0EUndxHY1sBUQMbeq3RtKfDsEFgG4UyK
RTwvxiRM2w2+O14k+wUoi/vqf4MzRm1NDi3bACfTsVRPTTBfNfqbyTtcz0YUbMWQa3MhXz7X
I/2T9OlBSA3gS4KIoE2Mbe2vPXTQZwrS4PfGM5QzL3Yt4tnnOOqZRQxRL6G5MUocZxiZXCdb
UkdmqJ4bAxAErXsUSRh1DVlLYSmhFsNm7KCtAtYRUYVER4hJ6Ae0hX5sz8J1ziYEp02MMgGu
EmyEUGzEyh35nMelv4jURePgOHsX4fra/gZjYgSDY+e2O4w2MTnpcMHTXMrZrAQJ9/0M2t5/
cVFE0DqkaIVc8DRfq+T3rE6fNkkU47ddoiBHEru4XoCXDdCJS69dJArzDA1vUBzuoiwwiaC1
TRI7JJFL2MsT+CWiaBzop8f0Hl4il1vBy3VwswEI6CSDZccUKx0cL0Ovac7PJDjyV6jP/x/k
3cyuOL2IoEVY7vW42xXWYgeNvbX1z2BJTMkWZj3DlYLTX2hBbe1wFGJjmO+FrIQWHd2PothK
GHGFYRdqESxGDtiFXaOFiNl39NAmpqy6XPQM01mbES+LvSU9GBvNSs+nmdCfuAL3etBRZRQW
lukx5gSsJznUlm7NYclwiQ7J4XMjp7k1VKCnEz5tBmwmDo6CrCUUbaHiwJBrUXAcXMviYSfg
UaDIKsOtksN0Pof91HeJtGax26WRQDNRhAZiURRsw2QGLuQyDGWef73E6JheyybjxbhZZ9ce
axFD7Mc0qxVa9SsYU2S3o/ikW6rtvyvlb33WpR/gtji+c9m/Tza7SuBfOD8GoINV/OU/QR2y
PfFJh46MJtIa17LIOs5Amye2q9jT/8meXL9tJN0e84HQSizGM4ZpD1YD4UGYx7KzGN1jwgm5
VbSYLRQG7hxaDHeabQJjcWsoS852aEYRv2oEhMZmNmsoOYqNSKjHCgXkbKg4woWcSyWzN1ls
kAzSl6l4nUQRzY0hWvVpkmQUSMhkqni5NhkvAGXoNkcJg0kEl5c5Q3qlDOCsebbTiAi1MGTF
D7lSzFFwBvefj9vWeUTHMX7HptcawmiHXKlFrtAjjjKEfh7XDchXYmzHRYwmDp4e0Uu8ClP/
53Luuu0GxvLwXAdjNNlDksQGRbZy54+avIjRiNGw5X6I9DMwxQiiBWMsRBRKCZm8M5BhPdsZ
lVKMZrOMHvC9RAQdhSirv3cANXieyyDXPZE/jHxF6OfJFrp4BefA36ZvVLJ9XsSQhDFx4O44
FEp2/rMEyzY4T8XvRYQkimltFmnWXkPrMk/qqLRbAmi29oABgr3SwMvWicIiSVKBlzyiH5fn
MABhY7OGEUOr1mD2xhs8T/+PQo+FOxcwOoOg8LwOmZwPotDawbI1mWwPx9H02iW6rTG0zvbF
dJVBxAFxELERHJ72HV13g1Jlg2yhS8aLsZy+nE8SO9iOwXENluOgrMN/DjEak8TEkUXQKdBu
jBEGE6A0lhVg2z62E2FZ/UmaaIuRqSUKw2pb1SDsaCwL7IwBEZLYRoyN7cbYDiBgtBD0cnQa
w/Q60xgp0O+EMbncEoVyA5046MRFKcGyNCKKMMiRRDmUFeM4MUmSI45GEJ7eNyG7/qyIyeZX
KVU2EHHotsoEvcn+lsw9HVmxu8sotB6m1311y9c+hwsk3L97G227ONrglceYnTq5LEq31ubz
9399hDDWsxOj4z1vH41SydZEqj+KKRVhW71+J3YSRBRiFK4Xks23sRxD0CnidyskegiRDINP
wGLKlbt4+ZDG5jRRNLn1DZKtp3pirAalIsDqG/P2KPuieJ7f9tXlueYARmtEKaytnVKWZT2X
Adz50Uenrm+TknIYpzoJ1lpvL1o8vXgxyDExBvN0vSrL2vm/9EOKPH1OnuTH7L0e2HuPfc4Z
Y7ZyjwQR9m17v3sh0o8mPfM8PHtsn+d/0ua+3+nI76v2fx52wrb7ndtu87DnP+y32++7HfJ9
92vzsO97UJuHf9/dfQWRnWPH+G6nHgU6KS8jKrJjAC+OtM2zQbYM4LhtnhsDSEl5GbzUVIhO
s8b9h/MUinmCBFzj4+RLtKt1rt16i3Lh9DdMb64ts7zRxCXCyeboNLsUi3lCsXnj5o3n2gl1
ECuLj2m0ukRxTNbz8HtdKuNTrCwt8t43vol7yoKaIgkP7txFi6IXh2SzJXw/oOBBJBnefvPw
KjYnIYl87t2+g8qV6Po9hnIeQQIq6ZItjXHj6qVTb7PbqnP37iNKIwXCCEYzIT1njHZ9leu3
vkrJO/of86VXa52+dJlMxqOUzZAtlrF1QjaXoVZrnkl7SllcvnSR/NAwlvYZnZim1agT+g3q
reBM2rRtm4uzk5RHJwn9DlOTE3j5IrOzl0+98z/BzZUYqwwxPTNJp5cwVi4iT/nup45AcWyK
ci7DxGiFBIehnMfo6CitVvuMmlRcuHqZjONRzLmMjY0RRgkzU6PblTCP4qUagDGGZr3O6HCZ
QnmYciHH2MwlisUSM1NjZ9Km1gm1RpNSLsPkpVu4VsI7732DidFJRstnU+o0jmMaXU3O1rz+
la+ixWKslGVyavxM2sMYotDHKpZJQuHdty7j5AvMTEwwOUB5o5MgYvA7LQrDI1i2x9UL4+SG
KljK5vXXT/+NA/11mWatxshIhUJ5hPWGz+Rwlkg7jBaOrmQD6Rwg5UvOS3eBUlJeJqkBpHyp
OTcbYlJSDuJ/+3f/O9//3rustSwmR4aYnBpls9rm8f3bGFwuvHadN69eYe7BPZYePYLxawRL
d/Atj6+/eZ1caYSO34NYk8Q+07MX+dl//ive+O6/Tt8AKeef6+N57tcSmvc/pNGs8id/9VNW
VhfI5oeoFHOsL63QDWosLW/wySePeOed64jAxelJ/v4ffspnv/opCzWfB598yMrKBv/vn/zf
eJV+AOL/BxulLc4eGjSJAAAAAElFTkSuQmCC
</thumbnail>
</thumbnails>
</workbook>