-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcodegen.C
907 lines (811 loc) · 30.4 KB
/
codegen.C
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
#include "codegen.H"
#include <iostream>
#include <iomanip>
#include "ast.H"
#include "sem.H"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/ExecutionEngine/MCJIT.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Verifier.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/TypeBuilder.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Transforms/Scalar.h"
namespace IR {
using namespace llvm;
using namespace std;
Code::Code()
: _ctx(getGlobalContext())
{
_module = new Module("jit",_ctx);
_builder = new IRBuilder<>(_ctx);
InitializeNativeTarget();
std::unique_ptr<llvm::Module> mPtr(_module);
EngineBuilder eb(std::move(mPtr));
_engine = eb.setEngineKind(EngineKind::JIT).create();
if (!_engine) {
cout << "couldn't get engine..." << endl;
exit(3);
}
// _fpm = new FunctionPassManager(_module);
// // Set up the optimizer pipeline. Start with registering info about how the
// // target lays out data structures.
// _fpm->add(new DataLayout(*_engine->getDataLayout()));
// // Do simple "peephole" optimizations and bit-twiddling optzns.
// _fpm->add(createInstructionCombiningPass());
// // Reassociate expressions.
// _fpm->add(createReassociatePass());
// // Eliminate Common SubExpressions.
// _fpm->add(createGVNPass());
// // Simplify the control flow graph (deleting unreachable blocks, etc).
// _fpm->add(createCFGSimplificationPass());
// _fpm->doInitialization();
// Create a declaration for malloc and save it in a map for later use.
llvm::Type* mrt = llvm::PointerType::get(llvm::TypeBuilder<llvm::types::i<8>,true>::get(llvm::getGlobalContext()),0);
llvm::Type* a0 = llvm::TypeBuilder<llvm::types::i<32>,true>::get(llvm::getGlobalContext());
ArrayRef<llvm::Type*> mallocArgs(a0);
//mallocArgs.push_back(a0);
FunctionType* mallocTy = FunctionType::get(mrt,mallocArgs,false);
Function* mallocFun = Function::Create(mallocTy,Function::ExternalLinkage,"malloc",getModule());
_lib["malloc"] = mallocFun;
}
Code::~Code()
{
delete _module;
delete _builder;
}
unsigned Code::getSize(llvm::Type* t)
{
return _engine->getDataLayout()->getTypeStoreSize(t);
}
llvm::Function* Code::getFun(const char* fName)
{
if (_lib.count(fName) > 0)
return _lib[fName];
else return 0;
}
void Code::start(llvm::BasicBlock* b)
{
_builder->SetInsertPoint(b);
_nob=false;
}
void Code::dump()
{
_module->dump();
}
void Code::generate(AST::Node* root)
{
root->generate(*this);
dump();
}
Vtbl::Vtbl(int sz,IR::Code& code)
: _tab(sz)
{
_at = llvm::ArrayType::get(llvm::PointerType::get(llvm::IntegerType::get(llvm::getGlobalContext(),8),0),_tab.size());
_glob = new llvm::GlobalVariable(*code.getModule(),_at,true,GlobalValue::ExternalLinkage,0,"vtbl");
}
llvm::Value* Vtbl::getAddress()
{
return _glob;
}
llvm::Value* Vtbl::emitVTBL(Code& code)
{
std::vector<llvm::Constant*> csts;
// That's the type of the element (void*)
llvm::Type* et = llvm::PointerType::get(llvm::TypeBuilder<llvm::types::i<8>,true>::get(llvm::getGlobalContext()),0);
// Now loop to make the cast on the constants.
llvm::ConstantFolder cf; // this could be cleaned up
for(std::vector<llvm::Function*>::iterator i=_tab.begin();i!=_tab.end();i++) {
llvm::Constant* cc = cf.CreateBitCast(*i,et);
csts.push_back(cc);
}
// Create the array constant
llvm::Constant* cst = llvm::ConstantArray::get(_at,csts);
// Add it as a global.
_glob->setInitializer(cst);
return _glob;
}
void Vtbl::patchWith(Vtbl* parent)
{
for(int k=0;k < _tab.size();k++)
if (_tab[k] == 0 && parent)
_tab[k] = parent->_tab[k];
}
}
namespace SEM {
// Produce an LLVM Type for the corresponding C-- type (void)
llvm::Type* TypeVoid::getLLVMType(IR::Code&)
{
return llvm::Type::getVoidTy(llvm::getGlobalContext());
}
// Produce an LLVM Type for the corresponding C-- type (int)
llvm::Type* TypeInt::getLLVMType(IR::Code&)
{
return llvm::TypeBuilder<llvm::types::i<32>,true>::get(llvm::getGlobalContext());
}
// Produce an LLVM Type for the corresponding C-- type (bool)
llvm::Type* TypeBool::getLLVMType(IR::Code&)
{
return llvm::TypeBuilder<llvm::types::i<1>,true>::get(llvm::getGlobalContext());
}
// Fill a vector of LLVM Types for the class attributes in the C-- scope (invoked on a class!)
void Scope::scanAttributes(IR::Code& code,std::vector<llvm::Type*>& att)
{
for(std::map<std::string,Descriptor*>::iterator i = _map.begin();i != _map.end();++i) {
if (i->second->isField()) {
FieldDescriptor* fd = dynamic_cast<FieldDescriptor*>(i->second);
fd->setFieldNumber(att.size());
llvm::Type* fdty = fd->getType()->getLLVMType(code);
att.push_back(fdty);
}
}
}
// Fill an LLVM type for a C-- class (traverse the hierarchy too!)
void TypeClass::emitAttributes(IR::Code& code,std::vector<llvm::Type*>& att)
{
if (_parent)
_parent->emitAttributes(code,att);
_scope->scanAttributes(code,att);
}
// Create and fill (lazily) a vector of LLVM types for a C-- class.
// Typical output can be seen on slides L12 , slide 28
llvm::Type* TypeClass::getLLVMType(IR::Code& code)
{
if (_llty)
return _llty;
else {
std::vector<llvm::Type*> attribs;
llvm::ArrayType* at = llvm::ArrayType::get(llvm::PointerType::get(llvm::IntegerType::get(llvm::getGlobalContext(),8),0),0);
attribs.push_back(llvm::PointerType::get(at,0));
emitAttributes(code,attribs);
llvm::StructType* cty = llvm::StructType::create(llvm::getGlobalContext(),attribs,"Class_"+_name);
//llvm::StructType* cty = llvm::StructType::get(llvm::PointerType::get(at,0),attribs);
_llty = cty;
//code.getModule()->addTypeName("Class_"+_name,cty);
cty->setName("Class_" + _name);
return cty;
}
}
// Create an LLVM type for an Instance type of C-- (i.e., a pointer to the class type!)
llvm::Type* TypeInstance::getLLVMType(IR::Code& code)
{
return llvm::PointerType::get(_of->getLLVMType(code),0);
}
llvm::Type* TypeArray::getLLVMType(IR::Code& code)
{
llvm::Type* et = _base->getLLVMType(code);
return llvm::PointerType::get(et,0);
}
// Create an LLVM type for a method type of C--
// Don't forget to add the 'hidden' this.
llvm::Type* TypeMethod::getLLVMType(IR::Code& code)
{
std::vector<llvm::Type*> formalsv;
llvm::Type* myrt = 0;
if (_rt)
myrt = _rt->getLLVMType(code);
else
myrt = llvm::Type::getVoidTy(llvm::getGlobalContext());
int k=0;
for(std::vector<Type*>::iterator i = _fTypes.begin();i!=_fTypes.end();i++) {
formalsv.push_back((*i)->getLLVMType(code));
}
llvm::ArrayRef<llvm::Type*> formals(formalsv);
return llvm::FunctionType::get(myrt,formals,false);
}
int ClassDescriptor::requiredSize(IR::Code& code)
{
unsigned ttl = 8; // 8 bytes for the VPTR (should be made platform dependent)
std::vector<llvm::Type*> fTypes;
dynamic_cast<TypeClass*>(_type)->emitAttributes(code,fTypes);
for(std::vector<llvm::Type*>::iterator i = fTypes.begin(); i != fTypes.end();i++ ) {
ttl += code.getSize(*i);
}
return ttl;
}
// Create an empty VTBL and store it in the class descriptor
void ClassDescriptor::makeVTBL(IR::Code& code)
{
_vtbl = new IR::Vtbl(_nbM,code);
}
// update the vtbl with a new value in slot k.
void ClassDescriptor::updateVTBL(int k,llvm::Function* mk) {
_vtbl->setMethod(k,mk);
}
// Produce the code for the class VTBL (Seen in L12, slides 29-30)
// You must fill the gaps with methods from the VTBL of the parent (since we inherit).
// We have to fill missing entries (inherited methods) from the parent's VTBL.
void ClassDescriptor::emitVTBL(IR::Code& code)
{
patchVTBL(); // fix the gaps (recursively)
_vtbl->emitVTBL(code); // dump the actual data definition.
}
// That's the recursive VTBL fixing.
IR::Vtbl* ClassDescriptor::patchVTBL()
{
IR::Vtbl* pVtbl = 0;
if (_pClass)
pVtbl = _pClass->patchVTBL();
_vtbl->patchWith(pVtbl);
return _vtbl;
}
// Retrieves the LLVM value representing the constant VTBL for the class.
llvm::Value* ClassDescriptor::getVTBLAddress()
{
return _vtbl->getAddress();
}
// give names to the argument of a method.
void TypeMethod::setFormalNames(llvm::Function* f) {
int k = 0;
llvm::Function::arg_iterator i = f->arg_begin();
for(;i != f->arg_end();++i,++k)
i->setName(_fNames[k]);
}
// Give names to the arguments of a method (delegate to the type)
void MethodDescriptor::setFormalNames(llvm::Function* f)
{
dynamic_cast<TypeMethod*>(getType())->setFormalNames(f);
}
// Build and return a vector of types for the formals appearing in a method/constructor
// Declaration. This is necessary when declaring a method.
vector<llvm::Type*> MethodDescriptor::getLLVMType(IR::Code& code)
{
assert(0);
std::vector<llvm::Type*> frmls;
std::vector<FormalDescriptor*>::iterator fdi = _args.begin();
while (fdi != _args.end()) {
frmls.push_back((*fdi)->getType()->getLLVMType(code));
++fdi;
}
return frmls;
}
// Associate to a FormalDescriptor an LLVM value that
// will represent the formal in the LLVM output. In this way the
// body of the method can retrieve the formaldescriptor from the scope
// and pick up the llvm value for it!
void MethodDescriptor::bindFormals(llvm::Function* f)
{
std::vector<FormalDescriptor*>::iterator fdi = _args.begin();
llvm::Function::arg_iterator i = f->arg_begin();
while (fdi!=_args.end()) {
(*fdi)->bindTo(i);
++i;
++fdi;
}
}
llvm::Value* FormalDescriptor::genExpr(IR::Code&)
{
return _val;
}
llvm::Value* FormalDescriptor::genAddress(IR::Code&)
{
return _val;
}
llvm::Value* LocalDescriptor::genExpr(IR::Code& code)
{
llvm::IRBuilder<>& build = code;
return build.CreateLoad(_val,"t");
}
llvm::Value* LocalDescriptor::genAddress(IR::Code&)
{
return _val;
}
}
namespace AST {
using namespace llvm;
// Emit code for the entire program. This implies:
// 1. Emit code for all the classes
// 2. Emit the VTBLs for all the classes
// 3. Emit prototypes of the functions in the C library we wish to call (e.g. malloc)
// 4. Emit the main entry point (whose job is to allocate a class of type Main and
// call its constructor.
void Program::generate(IR::Code& code)
{
std::list<Class*>::iterator i = _classes.begin();
while (i!=_classes.end()) {
(*i)->generate(code);
++i;
}
// fill/emit all the classes VTBL
i = _classes.begin();
while (i != _classes.end()) {
(*i)->emitVTBL(code);
++i;
}
Function* mallocFun = code.getFun("malloc");
// TODO
// Create a main function that instantiates the Main class.
IRBuilder<>& build = code;
_main->emitVTBL(code);
//Allocate necessary memory for main class
llvm::Value* size = ConstantInt::get(getGlobalContext(),llvm::APInt(sizeof(int), _main->requiredSize(code)));
llvm::ArrayRef<llvm::Value*> mallocArgs(size);
llvm::Value* obj = build.CreateCall(mallocFun, mallocArgs, "t");
//Arguments
llvm::ArrayRef<llvm::Value*> args(obj);
int mOfs = _cstr->getOffset();
llvm::Value* addrVTBL = _main->getVTBLAddress();
llvm::Value* basVTBL = build.CreateLoad(addrVTBL, "t");
llvm::Value* adrEntr = build.CreateConstGEP2_32(basVTBL,0,mOfs,"t");
llvm::Value* mthPtr = build.CreateLoad(adrEntr, "t");
llvm::Type* methodType = llvm::PointerType::get(_cstr->getType()->getLLVMType(code),0);
llvm::Value* f = build.CreateBitCast(mthPtr, methodType, "t");
//Actual call
build.CreateCall(f, args, "t");
}
// Emit the code for a base class.
// 1. Create a VTBL
// 2. Create a type for the class
// 3. Create the functions for all the methods.
void BClass::generate(IR::Code& code)
{
//cout << "class " << _id << " has " << _cDesc->nbMethods() << " methods"<< endl;
_cDesc->makeVTBL(code);
llvm::Type* cty = _tty->getLLVMType(code);
_cDesc->setLLVMType(cty);
for(std::list<Decl*>::iterator i = _decls.begin();i!=_decls.end();++i) {
(*i)->generateMethod(code,_cDesc);
}
}
// Actually create the VTBL representation.
void BClass::emitVTBL(IR::Code& code)
{
_cDesc->emitVTBL(code);
}
// Emit the code for a single method. This implies:
// 1. Make a vector of LLVM types for the formals.
// 2. Make an LLVM type for the return type
// 3. Create a method protoype
// 4. Bind the formals to llvm::value in the FormalDecriptors
// 5. Create an entry block.
// 6. Emit the body of the method.
// 7. Update the VTBL with the newly generated function.
llvm::Function* Method::generateMethod(IR::Code& code,SEM::ClassDescriptor* cd)
{
vector<llvm::Type*> frmls = _me->getLLVMType(code);
llvm::Type* rt = _rtty->getLLVMType(code);
FunctionType* fty = FunctionType::get(rt,frmls,false);
Function* f = Function::Create(fty,Function::ExternalLinkage,_id,code.getModule());
_me->setFormalNames(f);
_me->bindFormals(f);
BasicBlock* sb = BasicBlock::Create(getGlobalContext(),"entry",f);
code.start(sb);
_body->generate(code);
if (code.hasblock()) { // if a block is still open ...
IRBuilder<>& build = code;
build.CreateRetVoid(); // issue a return instruction
code.noblock(); // record the fact that there is no "open" block
}
cd->updateVTBL(_me->getOffset(), f);
verifyFunction(*f);
return f;
}
// Very similar to the method above.
llvm::Function* Constructor::generateMethod(IR::Code& code,SEM::ClassDescriptor* cd)
{
SEM::TypeMethod* mty = dynamic_cast<SEM::TypeMethod*>(_me->getType());
llvm::FunctionType* fty = (llvm::FunctionType*)(mty->getLLVMType(code));
Function* f = Function::Create(fty,Function::ExternalLinkage,_id,code.getModule());
_me->setFormalNames(f);
_me->bindFormals(f);
BasicBlock* sb = BasicBlock::Create(getGlobalContext(),"entry",f);
code.start(sb);
_body->generate(code);
if (code.hasblock()) { // if a block is still open ...
IRBuilder<>& build = code;
build.CreateRetVoid(); // issue a return instruction
code.noblock(); // record the fact that there is no "open" block
}
cd->updateVTBL(_me->getOffset(), f);
verifyFunction(*f);
return f;
}
// Bind a formal to an llvm value
void Formal::bindTo(llvm::Value* v) {
_desc->bindTo(v);
}
// ======================================================================
// Expressions ==========================================================
llvm::Value* Number::genExpr(IR::Code& code)
{
return ConstantInt::get(getGlobalContext(),llvm::APInt(32,_value));
}
llvm::Value* Boolean::genExpr(IR::Code& code)
{
return ConstantInt::get(getGlobalContext(),llvm::APInt(1,_value));
}
llvm::Value* MthCall::genExpr(IR::Code& code)
{
//Thanks Greg!
IRBuilder<>& build = code;
Expr* rcv = _callee->getReceiver();
SEM::MethodDescriptor* md = dynamic_cast<SEM::MethodDescriptor*>(_callee->getAttribute());
//Arguments
std::vector<llvm::Value*> actuals;
llvm::Value* obj = rcv->genExpr(code);
actuals.push_back(obj);
for(std::list<Expr*>::iterator it = _args.begin(); it != _args.end(); ++it) {
llvm::Value* a = (*it)->genExpr(code);
actuals.push_back(a);
}
int mOfs = md->getOffset();
llvm::Value* addrVTBL = build.CreateConstGEP2_32(obj,0,0,"t");
llvm::Value* basVTBL = build.CreateLoad(addrVTBL, "t");
llvm::Value* adrEntr = build.CreateConstGEP2_32(basVTBL,0,mOfs,"t");
llvm::Value* mthPtr = build.CreateLoad(adrEntr, "t");
llvm::Type* methodType = llvm::PointerType::get(md->getType()->getLLVMType(code),0);
llvm::Value* f = build.CreateBitCast(mthPtr, methodType, "t");
ArrayRef<llvm::Value*> args(actuals);
//Actual call
return build.CreateCall(f, args, "t");
}
llvm::Value* Opposite::genExpr(IR::Code& code)
{
llvm::Value* a = _op->genExpr(code);
IRBuilder<>& build = code;
llvm::Value* res = build.CreateNeg(a, "t");
return res;
}
llvm::Value* Not::genExpr(IR::Code& code)
{
llvm::Value* a = _op->genExpr( code);
IRBuilder<>& build = code;
llvm::Value* res = build.CreateNot(a, "t");
return res;
}
llvm::Value* Add::genExpr(IR::Code& code)
{
llvm::Value* a = _left->genExpr(code);
llvm::Value* b = _right->genExpr(code);
IRBuilder<>& build = code;
llvm::Value* c = build.CreateAdd(a,b,"t");
return c;
}
llvm::Value* Sub::genExpr(IR::Code& code)
{
llvm::Value* a = _left->genExpr(code);
llvm::Value* b = _right->genExpr(code);
IRBuilder<>& build = code;
llvm::Value* c = build.CreateSub(a,b,"t");
return c;
}
llvm::Value* Mul::genExpr(IR::Code& code)
{
llvm::Value* a = _left->genExpr(code);
llvm::Value* b = _right->genExpr(code);
IRBuilder<>& build = code;
llvm::Value* c = build.CreateMul(a,b,"t");
return c;
}
llvm::Value* Div::genExpr(IR::Code& code)
{
llvm::Value* a = _left->genExpr(code);
llvm::Value* b = _right->genExpr(code);
IRBuilder<>& build = code;
llvm::Value* c = build.CreateSDiv(a,b,"t");
return c;
}
llvm::Value* LThen::genExpr(IR::Code& code)
{
llvm::Value* a = _left->genExpr(code);
llvm::Value* b = _right->genExpr(code);
IRBuilder<>& build = code;
llvm::Value* c = build.CreateICmpSLT(a,b,"t");
return c;
}
llvm::Value* LEThen::genExpr(IR::Code& code)
{
llvm::Value* a = _left->genExpr(code);
llvm::Value* b = _right->genExpr(code);
IRBuilder<>& build = code;
llvm::Value* c = build.CreateICmpSLE(a,b,"t");
return c;
}
llvm::Value* GThen::genExpr(IR::Code& code)
{
llvm::Value* a = _left->genExpr(code);
llvm::Value* b = _right->genExpr(code);
IRBuilder<>& build = code;
llvm::Value* c = build.CreateICmpSGT(a,b,"t");
return c;
}
llvm::Value* GEThen::genExpr(IR::Code& code)
{
llvm::Value* a = _left->genExpr(code);
llvm::Value* b = _right->genExpr(code);
IRBuilder<>& build = code;
llvm::Value* c = build.CreateICmpSGE(a,b,"t");
return c;
}
llvm::Value* Equal::genExpr(IR::Code& code)
{
llvm::Value* a = _left->genExpr(code);
llvm::Value* b = _right->genExpr(code);
IRBuilder<>& build = code;
llvm::Value* c = build.CreateICmpEQ(a,b,"t");
return c;
}
llvm::Value* NEqual::genExpr(IR::Code& code)
{
llvm::Value* a = _left->genExpr(code);
llvm::Value* b = _right->genExpr(code);
IRBuilder<>& build = code;
llvm::Value* c = build.CreateICmpNE(a,b,"t");
return c;
}
llvm::Value* And::genExpr(IR::Code& code) // left && right
{
IRBuilder<>& build = code;
//We generate our new function
llvm::Function* f = build.GetInsertBlock()->getParent();
//Create basic blocks for if,else and merge any current open blocks
BasicBlock* startb = BasicBlock::Create(getGlobalContext(),"startb",f);
BasicBlock* nextb = BasicBlock::Create(getGlobalContext(),"nextb",f);
BasicBlock* exitb = BasicBlock::Create(getGlobalContext(), "exitb",f);
BasicBlock* mb = 0;
code.start(startb);
llvm::Value* cond1 = _left->genExpr(code);
//If first condition is false short circuit to end
build.CreateCondBr(cond1,nextb,exitb);
startb = build.GetInsertBlock();
code.start(nextb);
//Generate testing second condition code
llvm::Value* cond2 = _right->genExpr(code);
build.CreateBr(exitb);
nextb = build.GetInsertBlock();
//Start up the exit block
code.start(exitb);
llvm::PHINode* result = build.CreatePHI(cond1->getType(), 2);
result->addIncoming(cond1, startb);
result->addIncoming(cond2, nextb);
if (code.hasblock()) {
if (!mb)
mb = BasicBlock::Create(getGlobalContext(), "mergeb", f);
build.CreateBr(mb);
}
exitb = build.GetInsertBlock();
//Resume any block we may have interrupted
if (mb)
code.start(mb);
return result;
}
llvm::Value* Or::genExpr(IR::Code& code)
{
IRBuilder<>& build = code;
//We generate our new function
llvm::Function* f = build.GetInsertBlock()->getParent();
//Create basic blocks for if,else and merge any current open blocks
BasicBlock* startb = BasicBlock::Create(getGlobalContext(),"startb",f);
BasicBlock* nextb = BasicBlock::Create(getGlobalContext(),"nextb",f);
BasicBlock* exitb = BasicBlock::Create(getGlobalContext(), "exitb",f);
BasicBlock* mb = 0;
code.start(startb);
llvm::Value* cond1 = _left->genExpr(code);
//If first condition is false short circuit to end
build.CreateCondBr(cond1,exitb,nextb);
startb = build.GetInsertBlock();
code.start(nextb);
//Generate testing second condition code
llvm::Value* cond2 = _right->genExpr(code);
build.CreateBr(exitb);
nextb = build.GetInsertBlock();
//Start up the exit block
code.start(exitb);
llvm::PHINode* result = build.CreatePHI(cond1->getType(), 2);
result->addIncoming(cond1, startb);
result->addIncoming(cond2, nextb);
if (code.hasblock()) {
if (!mb)
mb = BasicBlock::Create(getGlobalContext(), "mergeb", f);
build.CreateBr(mb);
}
exitb = build.GetInsertBlock();
//Resume any block we may have interrupted
if (mb)
code.start(mb);
return result;
}
llvm::Value* InstantiateObject::genExpr(IR::Code& code)
{
IRBuilder<>& build = code;
//Malloc Call
llvm::Function* fmalloc = code.getFun("malloc");
llvm::Value* size = ConstantInt::get(getGlobalContext(),llvm::APInt(sizeof(int), _desc->requiredSize(code)));
llvm::ArrayRef<llvm::Value*> mallocArgs(size);
llvm::Value* obj = build.CreateCall(fmalloc, mallocArgs, "t");
//Arguments
std::vector<llvm::Value*> actuals;
actuals.push_back(obj);
for(std::list<Expr*>::iterator it = _args.begin(); it != _args.end(); ++it) {
llvm::Value* a = (*it)->genExpr(code);
actuals.push_back(a);
}
int mOfs = _mdesc->getOffset();
llvm::Value* addrVTBL = _desc->getVTBLAddress();
llvm::Value* basVTBL = build.CreateLoad(addrVTBL, "t");
llvm::Value* adrEntr = build.CreateConstGEP2_32(basVTBL,0,mOfs,"t");
llvm::Value* mthPtr = build.CreateLoad(adrEntr, "t");
llvm::Type* methodType = llvm::PointerType::get(_mdesc->getType()->getLLVMType(code),0);
llvm::Value* f = build.CreateBitCast(mthPtr, methodType, "t");
//Actual call
ArrayRef<llvm::Value*> args(actuals);
llvm::Value* result = build.CreateCall(f, args, "t");
return result;
}
llvm::Value* InstantiateArray::genExpr(IR::Code& code)
{
IRBuilder<>& build = code;
llvm::Value* size = _args->genExpr(code);
int typeSize = code.getSize(_at->getLLVMType(code));
llvm::Value* sizeOfType = ConstantInt::get(getGlobalContext(), llvm::APInt(sizeof(int), typeSize));
llvm::Value* sizeOfInt = ConstantInt::get(getGlobalContext(),llvm::APInt(sizeof(int),sizeof(int)));
size = build.CreateMul(size, sizeOfType);
llvm::Value* actualSize = build.CreateAdd(size, sizeOfInt);
llvm::Function* fmalloc = code.getFun("malloc");
llvm::ArrayRef<llvm::Value*> mallocArgs(actualSize);
llvm::Value* baseAddr = build.CreateCall(fmalloc, mallocArgs, "t");
build.CreateStore(size, baseAddr);
return baseAddr;
}
llvm::Value* Deref::genExpr(IR::Code& code)
{
IRBuilder<>& build = code;
llvm::Value* obj = _obj->genExpr(code);
int fn = dynamic_cast<SEM::FieldDescriptor*>(_aDesc)->getFieldNumber();
llvm::Value* adrField = build.CreateConstGEP2_32(obj,0,fn,"t");
return build.CreateLoad(adrField,"t");
}
llvm::Value* Deref::genAddress(IR::Code& code)
{
IRBuilder<>& build = code;
llvm::Value* obj = _obj->genExpr(code);
int fn = dynamic_cast<SEM::FieldDescriptor*>(_aDesc)->getFieldNumber();
llvm::Value* adrField = build.CreateConstGEP2_32(obj,0,fn,"t");
return adrField;
}
llvm::Value* ArrayIndex::genExpr(IR::Code& code)
{
IRBuilder<>& build = code;
llvm::Value* offset = ConstantInt::get(getGlobalContext(),llvm::APInt(sizeof(int),sizeof(int)));
llvm::Value* ind = _index->genExpr(code);
llvm::Value* addr = _array->genExpr(code);
llvm::Value* gep = build.CreateGEP(addr, ind, "t");
llvm::Value* ptr = build.CreateAdd(gep, offset, "t");
llvm::Value* result = build.CreateLoad(ptr, "t");
return result;
}
llvm::Value* ArrayIndex::genAddress(IR::Code& code)
{
IRBuilder<>& build = code;
llvm::Value* ind = _index->genExpr(code);
llvm::Value* addr = _array->genExpr(code);
llvm::Value* gep = build.CreateGEP(addr, ind, "t");
llvm::Value* offset = ConstantInt::get(getGlobalContext(),llvm::APInt(sizeof(int),sizeof(int)));
llvm::Value* ptr = build.CreateAdd(gep, offset, "t");
return ptr;
}
llvm::Value* Identifier::genExpr(IR::Code& code)
{
if (_oDesc) {
IRBuilder<>& build = code;
llvm::Value* ov = _oDesc->genExpr(code);
int fn = dynamic_cast<SEM::FieldDescriptor*>(_desc)->getFieldNumber();
llvm::Value* adrField = build.CreateConstGEP2_32(ov,0,fn,"t");
return build.CreateLoad(adrField,"t");
} else {
return _desc->genExpr(code);
}
}
llvm::Value* Identifier::genAddress(IR::Code& code)
{
if (_oDesc) {
IRBuilder<>& build = code;
llvm::Value* ov = _oDesc->genExpr(code);
int fn = dynamic_cast<SEM::FieldDescriptor*>(_desc)->getFieldNumber();
llvm::Value* adrField = build.CreateConstGEP2_32(ov,0,fn,"t");
return adrField;
} else
return _desc->genAddress(code);
}
// ======================================================================
// Statements ===========================================================
void Block::generate(IR::Code& code)
{
for(std::list<Stmt*>::iterator i=_body.begin();i!=_body.end();++i) {
(*i)->generate(code);
}
}
void StmtExpr::generate(IR::Code& code)
{
IRBuilder<>& build = code;
_expr->genExpr(code);
}
void StmtLocalDecl::generate(IR::Code& code)
{
IRBuilder<>& build = code;
llvm::Type* type = _desc->getType()->getLLVMType(code);
llvm::AllocaInst* baseAd = build.CreateAlloca(type);
_desc->bindTo(baseAd);
}
void StmtAssign::generate(IR::Code& code)
{
IRBuilder<>& build = code;
llvm::Value* l = _lv->genAddress(code);
llvm::Value* r = _expr->genExpr(code);
build.CreateStore(r,l);
}
void While::generate(IR::Code& code)
{
IRBuilder<>& build = code;
llvm::Function* f = build.GetInsertBlock()->getParent();
BasicBlock* tb = BasicBlock::Create(getGlobalContext(), "trueb", f);
BasicBlock* contb = BasicBlock::Create(getGlobalContext(), "contb", f);
BasicBlock* exitb = BasicBlock::Create(getGlobalContext(), "exitb", f);
BasicBlock* mb = 0;
code.start(contb);
llvm::Value* cv = _cond->genExpr(code);
build.CreateCondBr(cv, tb, exitb);
code.start(tb);
_body->generate(code);
build.CreateBr(contb);
tb = build.GetInsertBlock();
code.start(exitb);
if (code.hasblock()) {
if (!mb)
mb = BasicBlock::Create(getGlobalContext(), "mergeb", f);
build.CreateBr(mb);
}
exitb = build.GetInsertBlock();
if (mb)
code.start(mb);
}
void IfTE::generate(IR::Code& code)
{
IRBuilder<>& build = code;
//We generate our new function
llvm::Function* f = build.GetInsertBlock()->getParent();
//Create basic blocks for if,else and merge any current open blocks
BasicBlock* tb = BasicBlock::Create(getGlobalContext(),"trueb",f);
BasicBlock* fb = BasicBlock::Create(getGlobalContext(),"falseb",f);
BasicBlock* mb = 0;
//Evaluate our condition
llvm::Value* cv = _cond->genExpr(code);
//Create our branch condition with the appropriate labels
build.CreateCondBr(cv,tb,fb);
//Emit the label for true branch
code.start(tb);
//Generate true branch code
_tb->generate(code);
if (code.hasblock()) { //Handle block merging
mb = BasicBlock::Create(getGlobalContext(),"mergeb",f);
build.CreateBr(mb);
}
tb = build.GetInsertBlock();
//Start up the false block
code.start(fb);
if (_eb) { //If no false block, do not generate code.
_eb->generate(code);
}
if (code.hasblock()) {
if (!mb)
mb = BasicBlock::Create(getGlobalContext(), "mergeb", f);
build.CreateBr(mb);
}
fb = build.GetInsertBlock();
//Resume any block we may have interrupted
if (mb)
code.start(mb);
}
void Return::generate(IR::Code& code)
{
IRBuilder<>& build = code;
if (_ret)
build.CreateRet(_ret->genExpr(code));
build.CreateRetVoid();
}
}